scholarly journals The Anti-Oxidation and Mechanism of Essential Oil of Paederia scandens in the NAFLD Model of Chicken

Animals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 850
Author(s):  
Qiang Wu ◽  
Huaqiao Tang ◽  
Hongbin Wang

The aim of the study is to determine the underlying pathogenic mechanisms of oxidative stress and detect the anti-oxidative target of essential oil of Paederia scandens in non-alcoholic fatty liver disease (NAFLD). Chicken NAFLD was modeled by feeding with a high-capacity diet and Paederia scandens essential oil was used to treat the disease. The levels of hepatic reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), and the differential proteins and network of protein–protein interactions were investigated in model and drug-treated groups. The results showed that essential oil of Paederia scandens down regulated the hepatic ROS and MDA level significantly (p < 0.05 and 0.01, respectively). The heat shock cognate 71 kDa protein (HSP7C) was down regulated significantly, which was in the center of the network and interacted with 22 other proteins. The results showed that oxidative stress played an important role in the pathogenesis of chicken NAFLD. The essential oil of Paederia scandens showed good anti-oxidation activity by down regulating the HSP7C protein, which can be used as a potential therapeutic target in chicken NAFLD.

2018 ◽  
Vol 1 (2) ◽  
pp. 24-28
Author(s):  
Tanita Suttichaimongkol

Non-alcoholic fatty liver disease (NAFLD) is a leading cause of death from liver cirrhosis, endstage liver disease, and hepatocellular carcinoma. It is also associated with increased cardiovasculardisease and cancer related mortality. While lifestyle modifications are the mainstay of treatment,only a proportion of patients are able to make due to difficult to achieve and maintain, and so moretreatment options are required such as pharmacotherapy. This review presents the drugs used inmanaging NAFLD and their pharmacologic targets. Therapies are currently directed towards improvingthe metabolic status of the liver, insulin resistance, cell oxidative stress, apoptosis, inflammation orfibrosis. Several agents are now in large clinical trials and within the next few years, the availability oftherapeutic options for NAFLD will be approved.     Keywords: nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, fibrosis, cirrhosis  


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 102
Author(s):  
Federico Pietrocola ◽  
José Manuel Bravo-San Pedro

Reactive oxygen species (ROS) operate as key regulators of cellular homeostasis within a physiological range of concentrations, yet they turn into cytotoxic entities when their levels exceed a threshold limit. Accordingly, ROS are an important etiological cue for obesity, which in turn represents a major risk factor for multiple diseases, including diabetes, cardiovascular disorders, non-alcoholic fatty liver disease, and cancer. Therefore, the implementation of novel therapeutic strategies to improve the obese phenotype by targeting oxidative stress is of great interest for the scientific community. To this end, it is of high importance to shed light on the mechanisms through which cells curtail ROS production or limit their toxic effects, in order to harness them in anti-obesity therapy. In this review, we specifically discuss the role of autophagy in redox biology, focusing on its implication in the pathogenesis of obesity. Because autophagy is specifically triggered in response to redox imbalance as a quintessential cytoprotective mechanism, maneuvers based on the activation of autophagy hold promises of efficacy for the prevention and treatment of obesity and obesity-related morbidities.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 687
Author(s):  
Daniela Gabbia ◽  
Luana Cannella ◽  
Sara De De Martin

A peculiar role for oxidative stress in non-alcoholic fatty liver disease (NAFLD) and its transition to the inflammatory complication non-alcoholic steatohepatitis (NASH), as well as in its threatening evolution to hepatocellular carcinoma (HCC), is supported by numerous experimental and clinical studies. NADPH oxidases (NOXs) are enzymes producing reactive oxygen species (ROS), whose abundance in liver cells is closely related to inflammation and immune responses. Here, we reviewed recent findings regarding this topic, focusing on the role of NOXs in the different stages of fatty liver disease and describing the current knowledge about their mechanisms of action. We conclude that, although there is a consensus that NOX-produced ROS are toxic in non-neoplastic conditions due to their role in the inflammatory vicious cycle sustaining the transition of NAFLD to NASH, their effect is controversial in the neoplastic transition towards HCC. In this regard, there are indications of a differential effect of NOX isoforms, since NOX1 and NOX2 play a detrimental role, whereas increased NOX4 expression appears to be correlated with better HCC prognosis in some studies. Further studies are needed to fully unravel the mechanisms of action of NOXs and their relationships with the signaling pathways modulating steatosis and liver cancer development.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mihiri Goonetilleke ◽  
Nathan Kuk ◽  
Jeanne Correia ◽  
Alex Hodge ◽  
Gregory Moore ◽  
...  

Abstract Background Non-alcoholic fatty liver disease is the most common liver disease globally and in its inflammatory form, non-alcoholic steatohepatitis (NASH), can progress to cirrhosis and hepatocellular carcinoma (HCC). Currently, patient education and lifestyle changes are the major tools to prevent the continued progression of NASH. Emerging therapies in NASH target known pathological processes involved in the progression of the disease including inflammation, fibrosis, oxidative stress and hepatocyte apoptosis. Human amniotic epithelial cells (hAECs) were previously shown to be beneficial in experimental models of chronic liver injury, reducing hepatic inflammation and fibrosis. Previous studies have shown that liver progenitor cells (LPCs) response plays a significant role in the development of fibrosis and HCC in mouse models of fatty liver disease. In this study, we examined the effect hAECs have on the LPC response and hepatic oxidative stress in an experimental model of NASH. Methods Experimental NASH was induced in C57BL/6 J male mice using a high-fat, high fructose diet for 42 weeks. Mice received either a single intraperitoneal injection of 2 × 106 hAECs at week 34 or an additional hAEC dose at week 38. Changes to the LPC response and oxidative stress regulators were measured. Results hAEC administration significantly reduced the expansion of LPCs and their mitogens, IL-6, IFNγ and TWEAK. hAEC administration also reduced neutrophil infiltration and myeloperoxidase production with a concurrent increase in heme oxygenase-1 production. These observations were accompanied by a significant increase in total levels of anti-fibrotic IFNβ in mice treated with a single dose of hAECs, which appeared to be independent of c-GAS-STING activation. Conclusions Expansion of liver progenitor cells, hepatic inflammation and oxidative stress associated with experimental NASH were attenuated by hAEC administration. Given that repeated doses did not significantly increase efficacy, future studies assessing the impact of dose escalation and/or timing of dose may provide insights into clinical translation.


2013 ◽  
Vol 41 (03) ◽  
pp. 487-502 ◽  
Author(s):  
Wei-Xi Cui ◽  
Jie Yang ◽  
Xiao-Qing Chen ◽  
Qian Mao ◽  
Xiang-Lan Wei ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) has become a major challenge to the healthcare system. This study was designed to evaluate the effect of the triterpenoid-rich fraction (TF) from Ilex hainanensis Merr. on NAFLD. Male Sprague-Dawley (SD) rats were fed a normal diet (control) or high fat diet (NAFLD model). After four weeks, the high fat diet group was orally administrated TF (250 mg/kg) for another two weeks. High fat diet fed rats displayed hyperlipidemia and a decline in liver function compared with control. However, administration with TF could effectively improve these symptoms, as demonstrated by decreasing the plasma levels of triglyceride (p <0.05), total cholesterol (p < 0.01), low-density lipoprotein cholesterol (p < 0.05), alanine transaminase (p < 0.05), aspartate aminotransferase (p < 0.01), liver index (p < 0.05) and insulin resistance index (p < 0.05) while increasing the high-density lipoprotein cholesterol (p < 0.05). Meanwhile, histopathological examination of livers also showed that TF could reduce the incidence of liver lesions induced by high fat diet. Furthermore, TF could alleviate oxidative stress and inflammation status indicated by the decline malondialdehyde and superoxide dismutase levels (p < 0.01, both) and levels of interleukin 6 and tumor necrosis factor-α (p < 0.05). In addition, immunohistochemistry showed TF evidently elevated the peroxisome proliferator-activated receptor (PPARα) expression (p < 0.01), while it diminished the Cytochrome P450 2E1 (CYP2E1) expression (p < 0.01) in liver. These results demonstrate that TF has potential ability to protect liver against NAFLD by regulating lipids metabolism and alleviating insulin resistance, inflammation and oxidative stress. This effect might be associated with regulating PPARα and CYP2E1 expression.


Sign in / Sign up

Export Citation Format

Share Document