scholarly journals IMGT® and 30 Years of Immunoinformatics Insight in Antibody V and C Domain Structure and Function

Antibodies ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 29 ◽  
Author(s):  
Lefranc ◽  
Lefranc

At the 10th Human Genome Mapping (HGM10) Workshop, in New Haven, for the first time, immunoglobulin (IG) or antibody and T cell receptor (TR) variable (V), diversity (D), joining (J), and constant (C) genes were officially recognized as ‘genes’, as were the conventional genes. Under these HGM auspices, IMGT®, the international ImMunoGeneTics information system® (http://www.imgt.org), was created in June 1989 at Montpellier (University of Montpellier and CNRS). The creation of IMGT® marked the birth of immunoinformatics, a new science, at the interface between immunogenetics and bioinformatics. The accuracy and the consistency between genes and alleles, sequences, and three-dimensional (3D) structures are based on the IMGT Scientific chart rules generated from the IMGT-ONTOLOGY axioms and concepts: IMGT standardized keywords (IDENTIFICATION), IMGT gene and allele nomenclature (CLASSIFICATION), IMGT standardized labels (DESCRIPTION), IMGT unique numbering and IMGT Collier de Perles (NUMEROTATION). These concepts provide IMGT® immunoinformatics insights for antibody V and C domain structure and function, used for the standardized description in IMGT® web resources, databases and tools, immune repertoires analysis, single cell and/or high-throughput sequencing (HTS, NGS), antibody humanization, and antibody engineering in relation with effector properties.

Author(s):  
Peter Sterling

The synaptic connections in cat retina that link photoreceptors to ganglion cells have been analyzed quantitatively. Our approach has been to prepare serial, ultrathin sections and photograph en montage at low magnification (˜2000X) in the electron microscope. Six series, 100-300 sections long, have been prepared over the last decade. They derive from different cats but always from the same region of retina, about one degree from the center of the visual axis. The material has been analyzed by reconstructing adjacent neurons in each array and then identifying systematically the synaptic connections between arrays. Most reconstructions were done manually by tracing the outlines of processes in successive sections onto acetate sheets aligned on a cartoonist's jig. The tracings were then digitized, stacked by computer, and printed with the hidden lines removed. The results have provided rather than the usual one-dimensional account of pathways, a three-dimensional account of circuits. From this has emerged insight into the functional architecture.


2019 ◽  
Vol 20 (11) ◽  
pp. 1046-1051 ◽  
Author(s):  
Przemysław Gajda-Morszewski ◽  
Klaudyna Śpiewak-Wojtyła ◽  
Maria Oszajca ◽  
Małgorzata Brindell

Lactoferrin was isolated and purified for the first time over 50-years ago. Since then, extensive studies on the structure and function of this protein have been performed and the research is still being continued. In this mini-review we focus on presenting recent scientific efforts towards the elucidation of the role and therapeutic potential of lactoferrin saturated with iron(III) or manganese(III) ions. The difference in biological activity of metal-saturated lactoferrin vs. the unmetalated one is emphasized. The strategies for oral delivery of lactoferrin, are also reviewed, with particular attention to the metalated protein.


PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0171355 ◽  
Author(s):  
Roshni Bhattacharya ◽  
Peter W. Rose ◽  
Stephen K. Burley ◽  
Andreas Prlić

2008 ◽  
Vol 74 (24) ◽  
pp. 7821-7823 ◽  
Author(s):  
Kai Linke ◽  
Nagarajan Periasamy ◽  
Matthias Ehrmann ◽  
Roland Winter ◽  
Rudi F. Vogel

ABSTRACT High hydrostatic pressure (HHP) is suggested to influence the structure and function of membranes and/or integrated proteins. We demonstrate for the first time HHP-induced dimer dissociation of membrane proteins in vivo with Vibrio cholerae ToxR variants in Escherichia coli reporter strains carrying ctx::lacZ fusions. Dimerization ceased at 20 to 50 MPa depending on the nature of the transmembrane segments rather than on changes in the ToxR lipid bilayer environment.


2001 ◽  
Vol 43 (6) ◽  
pp. 135-135 ◽  
Author(s):  
J.-U. Kreft ◽  
J. W. Wimpenny

We have simulated a nitrifying biofilm with one ammonia and one nitrite oxidising species in order to elucidate the effect of various extracellular polymeric substance (EPS) production scenarios on biofilm structure and function. The individual-based model (IbM) BacSim simulates diffusion of all substrates on a two-dimensional lattice. Each bacterium is individually simulated as a sphere of given size in a continuous, three-dimensional space. EPS production kinetics was described by a growth rate dependent and an independent term (Luedeking-Piret equation). The structure of the biofilm was dramatically influenced by EPS production or capsule formation. EPS production decreased growth of producers and stimulated growth of non-producers because of the energy cost involved. For the same reason, EPS accumulation can fall as its rate of production increases. The patchiness and roughness of the biofilm decreased and the porosity increased due to EPS production. EPS density was maximal in the middle of the vertical profile. Introduction of binding forces between like cells increased clustering.


2005 ◽  
Vol 73 (10) ◽  
pp. 6332-6339 ◽  
Author(s):  
Charlotte M. A. Linde ◽  
Susanna Grundström ◽  
Erik Nordling ◽  
Essam Refai ◽  
Patrick J. Brennan ◽  
...  

ABSTRACT Granulysin and NK-lysin are homologous bactericidal proteins with a moderate residue identity (35%), both of which have antimycobacterial activity. Short loop peptides derived from the antimycobacterial domains of granulysin, NK-lysin, and a putative chicken NK-lysin were examined and shown to have comparable antimycobacterial but variable Escherichia coli activities. The known structure of the NK-lysin loop peptide was used to predict the structure of the equivalent peptides of granulysin and chicken NK-lysin by homology modeling. The last two adopted a secondary structure almost identical to that of NK-lysin. All three peptides form very similar three-dimensional (3-D) architectures in which the important basic residues assume the same positions in space. The basic residues in granulysin are arginine, while those in NK-lysin and chicken NK-lysin are a mixture of arginine and lysine. We altered the ratio of arginine to lysine in the granulysin fragment to examine the importance of basic residues for antimycobacterial activity. The alteration of the amino acids reduced the activity against E. coli to a larger extent than that against Mycobacterium smegmatis. In granulysin, the arginines in the loop structure are not crucial for antimycobacterial activity but are important for cytotoxicity. We suggest that the antibacterial domains of the related proteins granulysin, NK-lysin, and chicken NK-lysin have conserved their 3-D structure and their function against mycobacteria.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3155
Author(s):  
Shumin Liu ◽  
Fengbin Zhao ◽  
Xin Fang

Phytoplankton and bacterioplankton play a vital role in the structure and function of aquatic ecosystems, and their activity is closely linked to water eutrophication. However, few researchers have considered the temporal and spatial succession of phytoplankton and bacterioplankton, and their responses to environmental factors. The temporal and spatial succession of bacterioplankton and their ecological interaction with phytoplankton and water quality were analyzed using 16S rDNA high-throughput sequencing for their identification, and the functions of bacterioplankton were predicted. The results showed that the dominant classes of bacterioplankton in the Qingcaosha Reservoir were Gammaproteobacteria, Alphaproteobacteria, Actinomycetes, Acidimicrobiia, and Cyanobacteria. In addition, the Shannon diversity indexes were compared, and the results showed significant temporal differences based on monthly averaged value, although no significant spatial difference. The community structure was found to be mainly influenced by phytoplankton density and biomass, dissolved oxygen, and electrical conductivity. The presence of Pseudomonas and Legionella was positively correlated with that of Pseudanabaena sp., and Sphingomonas and Paragonimus with Melosira granulata. On the contrary, the presence of Planctomycetes was negatively correlated with Melosira granulata, as was Deinococcus-Thermus with Cyclotella sp. The relative abundance of denitrifying bacteria decreased from April to December, while the abundance of nitrogen-fixing bacteria increased. This study provides a scientific basis for understanding the ecological interactions between bacteria, algae, and water quality in reservoir ecosystems.


Sign in / Sign up

Export Citation Format

Share Document