scholarly journals Phage Therapy in Livestock and Companion Animals

Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 559
Author(s):  
Celia Ferriol-González ◽  
Pilar Domingo-Calap

The irrational use of antibiotics has led to a high emergence of multi-drug resistant (MDR) bacteria. The traditional overuse of antibiotics in the animal feed industry plays a crucial role in the emergence of these pathogens that pose both economic and health problems. In addition, antibiotics have also recently experienced an increase to treat companion animal infections, promoting the emergence of MDR bacteria in pets, which can reach humans. Phages have been proposed as an alternative for antibiotics for the treatment of livestock and companion animal infections due to their multiple advantages as adaptative drugs, such as their ability to evolve, to multiply at the site of infections, and their high specificity. Moreover, phage-derived enzymes may also be an interesting approach. However, the lack of regulation for this type of pharmaceutical hinders its potential commercialization. In this review, we summarize the main recent studies on phage therapy in livestock and companion animals, providing an insight into current advances in this area and the future of treatments for bacterial infections.

Spinal Cord ◽  
2021 ◽  
Author(s):  
Lorenz Leitner ◽  
Shawna McCallin ◽  
Thomas M. Kessler

AbstractBacterial infections are the leading cause of death in people with a spinal cord injury (SCI). Bacteriophages (phages) are viruses that solely infect and kill bacteria. The idea of using phages to treat bacterial infections, i.e., phage therapy, is very promising and potentially allows a more specific and personalized treatment of bacterial infections than antibiotics. While multi-drug resistant infections affect individuals from the general population, alternative therapeutic options are especially warranted in high-risk populations, such as individuals with SCI. However, more clinical data must be collected before phage therapy can be implemented in clinical practice, with numerous possible, subsequent applications.


Viruses ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 188 ◽  
Author(s):  
Angela Holguín ◽  
Pablo Cárdenas ◽  
Catalina Prada-Peñaranda ◽  
Laura Rabelo Leite ◽  
Camila Buitrago ◽  
...  

Bacteriophages represent an alternative solution to control bacterial infections. When interacting, bacteria and phage can evolve, and this relationship is described as antagonistic coevolution, a pattern that does not fit all models. In this work, the model consisted of a microcosm of Salmonella enterica serovar Enteritidis and φSan23 phage. Samples were taken for 12 days every 48 h. Bacteria and phage samples were collected; and isolated bacteria from each time point were challenged against phages from previous, contemporary, and subsequent time points. The phage plaque tests, with the genomics analyses, showed a mutational asymmetry dynamic in favor of the bacteria instead of antagonistic coevolution. This is important for future phage-therapy applications, so we decided to explore the population dynamics of Salmonella under different conditions: pressure of one phage, a combination of phages, and phages plus an antibiotic. The data from cultures with single and multiple phages, and antibiotics, were used to create a mathematical model exploring population and resistance dynamics of Salmonella under these treatments, suggesting a nonlethal, growth-inhibiting antibiotic may decrease resistance to phage-therapy cocktails. These data provide a deep insight into bacterial dynamics under different conditions and serve as additional criteria to select phages and antibiotics for phage-therapy.


mSphere ◽  
2016 ◽  
Vol 1 (5) ◽  
Author(s):  
Ana M. Misic ◽  
Christine L. Cain ◽  
Daniel O. Morris ◽  
Shelley C. Rankin ◽  
Daniel P. Beiting

ABSTRACT Drug-resistant Staphylococcus species are a major concern in human and veterinary medicine. There is a need for new antibiotics that exhibit a selective effect in treating infections in companion and livestock animals and that would not be used to treat human bacterial infections. We have identified fosmidomycin as an antibiotic that selectively targets certain Staphylococcus species that are often encountered in skin infections in cats and dogs. These findings expand our understanding of Staphylococcus evolution and may have direct implications for treating staphylococcal infections in veterinary medicine. Staphylococcus species are a leading cause of skin and soft tissue infections in humans and animals, and the antibiotics used to treat these infections are often the same. Methicillin- and multidrug-resistant staphylococcal infections are becoming more common in human and veterinary medicine. From a “One Health” perspective, this overlap in antibiotic use and resistance raises concerns over the potential spread of antibiotic resistance genes. Whole-genome sequencing and comparative genomics analysis revealed that Staphylococcus species use divergent pathways to synthesize isoprenoids. Species frequently associated with skin and soft tissue infections in companion animals, including S. schleiferi and S. pseudintermedius, use the nonmevalonate pathway. In contrast, S. aureus, S. epidermidis, and S. lugdunensis use the mevalonate pathway. The antibiotic fosmidomycin, an inhibitor of the nonmevalonate pathway, was effective in killing canine clinical staphylococcal isolates but had no effect on the growth or survival of S. aureus and S. epidermidis. These data identify an essential metabolic pathway in Staphylococcus that differs among members of this genus and suggest that drugs such as fosmidomycin, which targets enzymes in the nonmevalonate pathway, may be an effective treatment for certain staphylococcal infections. IMPORTANCE Drug-resistant Staphylococcus species are a major concern in human and veterinary medicine. There is a need for new antibiotics that exhibit a selective effect in treating infections in companion and livestock animals and that would not be used to treat human bacterial infections. We have identified fosmidomycin as an antibiotic that selectively targets certain Staphylococcus species that are often encountered in skin infections in cats and dogs. These findings expand our understanding of Staphylococcus evolution and may have direct implications for treating staphylococcal infections in veterinary medicine.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1331
Author(s):  
Philip Lauman ◽  
Jonathan J. Dennis

The increasing prevalence and worldwide distribution of multidrug-resistant bacterial pathogens is an imminent danger to public health and threatens virtually all aspects of modern medicine. Particularly concerning, yet insufficiently addressed, are the members of the Burkholderia cepacia complex (Bcc), a group of at least twenty opportunistic, hospital-transmitted, and notoriously drug-resistant species, which infect and cause morbidity in patients who are immunocompromised and those afflicted with chronic illnesses, including cystic fibrosis (CF) and chronic granulomatous disease (CGD). One potential solution to the antimicrobial resistance crisis is phage therapy—the use of phages for the treatment of bacterial infections. Although phage therapy has a long and somewhat checkered history, an impressive volume of modern research has been amassed in the past decades to show that when applied through specific, scientifically supported treatment strategies, phage therapy is highly efficacious and is a promising avenue against drug-resistant and difficult-to-treat pathogens, such as the Bcc. In this review, we discuss the clinical significance of the Bcc, the advantages of phage therapy, and the theoretical and clinical advancements made in phage therapy in general over the past decades, and apply these concepts specifically to the nascent, but growing and rapidly developing, field of Bcc phage therapy.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 325-325
Author(s):  
Ranell Mueller

Abstract Knowledge of the deeper meaning of how growing older alongside companion animal dogs affects men’s perspectives of aging is limited. This study employed qualitative research methods utilizing individual interviews and panel discussions with older adult men in order to investigate the dynamic phenomenon of their personal experience of growing older alongside their aging companion animal dogs. Individual audio-recorded and in-depth interviews and repeated panel discussions with a sub-group of participants, convened as a panel over a three-month period, explored behavioral and emotional manifestations of aging along with a companion animal. Analysis involved open, axial, and selective coding of transcripts to reveal underlying patterns within the data. Outcomes included insight into the role of dogs in the men’s perspectives of attitudes toward aging, toward not only themselves as older adult men, but also toward their aging dogs. Findings reveal that the older adult men felt empathy for their aging dogs, which translated to feeling empathy for themselves as well as other older adults. The men revealed attitudes of being sympathetic and understanding of the aging process simply as a result of aging alongside their aging dogs. A prominent idea that emerged was a feeling of grace toward oneself, others and their aging dogs. This study offers insight into the deeper understanding of one effect caring for older companion animals has on older adult men’s attitudes toward aging. This study provides movement toward a theory of the role of dogs in the development of older adult men’s attitudes toward aging.


Viruses ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 96 ◽  
Author(s):  
Karim Abdelkader ◽  
Hans Gerstmans ◽  
Amal Saafan ◽  
Tarek Dishisha ◽  
Yves Briers

The therapeutic potential of phages has been considered since their first identification more than a century ago. The evident concept of using a natural predator to treat bacterial infections has, however, since then been challenged considerably. Initially, the vast success of antibiotics almost eliminated the study of phages for therapy. Upon the renaissance of phage therapy research, the most provocative and unique properties of phages such as high specificity, self-replication and co-evolution prohibited a rapid preclinical and clinical development. On the one hand, the typical trajectory followed by small molecule antibiotics could not be simply translated into the preclinical analysis of phages, exemplified by the need for complex broad spectrum or personalized phage cocktails of high purity and the more complex pharmacokinetics. On the other hand, there was no fitting regulatory framework to deal with flexible and sustainable phage therapy approaches, including the setup and approval of adequate clinical trials. While significant advances are incrementally made to eliminate these hurdles, phage-inspired antibacterials have progressed in the slipstream of phage therapy, benefiting from the lack of hurdles that are typically associated with phage therapy. Most advanced are phage lytic enzymes that kill bacteria through peptidoglycan degradation and osmotic lysis. Both phages and their lytic enzymes are now widely considered as safe and have now progressed to clinical phase II to show clinical efficacy as pharmaceutical. Yet, more initiatives are needed to fill the clinical pipeline to beat the typical attrition rates of clinical evaluation and to come to a true evaluation of phages and phage lytic enzymes in the clinic.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sandeep Kaur ◽  
Anila Kumari ◽  
Anjana Kumari Negi ◽  
Vikas Galav ◽  
Shikha Thakur ◽  
...  

With the emergence and spread of global antibiotic resistance and the need for searching safer alternatives, there has been resurgence in exploring the use of bacteriophages in the treatment of bacterial infections referred as phage therapy. Although modern phage therapy has come a long way as demonstrated by numerous efficacy studies but the fact remains that till date, phage therapy has not received regulatory approval for human use (except for compassionate use).Thus, to hit the clinical market, the roadblocks need to be seriously addressed and gaps mended with modern solution based technologies. Nanotechnology represents one such ideal and powerful tool for overcoming the pharmacological barriers (low stability, poor in-vivo retention, targeted delivery, neutralisation by immune system etc.) of administered phage preparations.In literature, there are many review articles on nanotechnology and bacteriophages but these are primarily focussed on highlighting the use of lytic and temperate phages in different fields of nano-medicine such as nanoprobes, nanosensors, cancer diagnostics, cancer cell targeting, drug delivery through phage receptors, phage display etc. Reviews specifically focused on the use of nanotechnology driven techniques strictly to improve phage therapy are however limited. Moreover, these review if present have primarily focussed on discussing encapsulation as a primary method for improving the stability and retention of phage(s) in the body.With new advances made in the field of nanotechnology, approaches extend from mere encapsulation to recently adopted newer strategies. The present review gives a detailed insight into the more recent strategies which include 1) use of lipid based nano-carriers (liposomes, transfersomes etc.) 2) adopting microfluidic based approach, surface modification methods to further enhance the efficiency and stability of phage loaded liposomes 3) Nano- emulsification approach with integration of microfluidics for producing multiple emulsions (suitable for phage cocktails) with unique control over size, shape and drop morphology 4) Phage loaded nanofibers produced by electro-spinning and advanced core shell nanofibers for immediate, biphasic and delayed release systems and 5) Smart release drug delivery platforms that allow superior control over dosing and phage release as and when required. All these new advances are aimed at creating a suitable housing system for therapeutic bacteriophage preparations while targeting the multiple issues of phage therapy i.e., improving phage stability and titers, improving in-vivo retention times, acting as suitable delivery systems for sustained release at target site of infection, improved penetration into biofilms and protection from immune cell attack. The present review thus aims at giving a complete insight into the recent advances (2010 onwards) related to various nanotechnology based approaches to address the issues pertaining to phage therapy. This is essential for improving the overall therapeutic index and success of phage therapy for future clinical approval.


2020 ◽  
Vol 21 (10) ◽  
pp. 3715
Author(s):  
Alessia Brix ◽  
Marco Cafora ◽  
Massimo Aureli ◽  
Anna Pistocchi

Phagotherapy, the use of bacteriophages to fight bacterial infections as an alternative to antibiotic treatments, has become of increasing interest in the last years. This is mainly due to the diffusion of multi-drug resistant (MDR) bacterial infections that constitute a serious issue for public health. Phage therapy is gaining favor due to its success in agriculture and veterinary treatments and its extensive utilization for human therapeutic protocols in the Eastern world. In the last decades, some clinical trials and compassionate treatments have also been performed in the Western world, indicating that phage therapy is getting closer to its introduction in standard therapy protocols. However, several questions concerning the use of phages in human therapeutic treatments are still present and need to be addressed. In this review, we illustrate the state of art of phage therapy and examine the role of animal models to translate these treatments to humans.


Sign in / Sign up

Export Citation Format

Share Document