scholarly journals Long-Lasting Stable Expression of Human LL-37 Antimicrobial Peptide in Transgenic Barley Plants

Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 898
Author(s):  
Malihe Mirzaee ◽  
Edita Holásková ◽  
Alžbeta Mičúchová ◽  
David J. Kopečný ◽  
Zhila Osmani ◽  
...  

Antimicrobial peptides play a crucial role in the innate immune system of multicellular organisms. LL-37 is the only known member of the human cathelicidin family. As well as possessing antibacterial properties, it is actively involved in various physiological responses in eukaryotic cells. Accordingly, there is considerable interest in large-scale, low-cost, and microbial endotoxin-free production of LL-37 recombinant peptides for pharmaceutical applications. As a heterologous expression biofactory, we have previously obtained homologous barley (Hordeum vulgare L.) as an attractive vehicle for producing recombinant human LL-37 in the grain storage compartment, endosperm. The long-term stability of expression and inheritance of transgenes is necessary for the successful commercialization of recombinant proteins. Here, we report the stable inheritance and expression of the LL-37 gene in barley after six generations, including two consecutive seasons of experimental field cultivation. The transgenic plants showed normal growth and remained fertile. Based on the bacteria viability test, the produced peptide LL-37 retained high antibacterial activity.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dingwang Huang ◽  
Lintao Li ◽  
Kang Wang ◽  
Yan Li ◽  
Kuang Feng ◽  
...  

AbstractA highly efficient, low-cost and environmentally friendly photocathode with long-term stability is the goal of practical solar hydrogen evolution applications. Here, we found that the Cu3BiS3 film-based photocathode meets the abovementioned requirements. The Cu3BiS3-based photocathode presents a remarkable onset potential over 0.9 VRHE with excellent photoelectrochemical current densities (~7 mA/cm2 under 0 VRHE) and appreciable 10-hour long-term stability in neutral water solutions. This high onset potential of the Cu3BiS3-based photocathode directly results in a good unbiased operating photocurrent of ~1.6 mA/cm2 assisted by the BiVO4 photoanode. A tandem device of Cu3BiS3-BiVO4 with an unbiased solar-to-hydrogen conversion efficiency of 2.04% is presented. This tandem device also presents high stability over 20 hours. Ultimately, a 5 × 5 cm2 large Cu3BiS3-BiVO4 tandem device module is fabricated for standalone overall solar water splitting with a long-term stability of 60 hours.


2021 ◽  
Vol 2115 (1) ◽  
pp. 012026
Author(s):  
Sonam Solanki ◽  
Gunendra Mahore

Abstract In the current process of producing vermicompost on a large-scale, the main challenge is to keep the worms alive. This is achieved by maintaining temperature and moisture in their living medium. It is a difficult task to maintain these parameters throughout the process. Currently, this is achieved by building infrastructure but this method requires a large initial investment and long-run maintenance. Also, these methods are limited to small-scale production. For large-scale production, a unit is developed which utilises natural airflow with water and automation. The main aim of this unit is to provide favourable conditions to worms in large-scale production with very low investment and minimum maintenance in long term. The key innovation of this research is that the technology used in the unit should be practical and easy to adopt by small farmers. For long-term maintenance of the technology lesser number of parts are used.


Diversity ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 47 ◽  
Author(s):  
Christian Kerbiriou ◽  
Yves Bas ◽  
Isabelle Le Viol ◽  
Romain Lorrillière ◽  
Justine Mougnot ◽  
...  

Few reports have been published on detection distances of bat calls because the evaluation of detection distance is complicated. Several of the approaches used to measure detection distances are based on the researcher’s experience and judgment. More recently, multiple microphones have been used to model flight path. In this study, the validity of a low-cost and simple detectability metric was tested. We hypothesize that the duration of an echolocating-bat-pass within the area of an ultrasonic bat detector is correlated with the distance of detection. Two independent datasets from a large-scale acoustic bat survey—a total of 25,786 bat-passes from 20 taxa (18 species and two genera)—were measured. We found a strong relationship between these measures of bat-pass duration and published detection distances. The advantages of bat-pass duration measures are that, for each study, experimenters easily produce their own proxy for the distance of detection. This indirect measure of the distance of detection could be mobilized to monitor the loss in microphone sensitivity used to monitor long-term population trends. Finally, the possibility of producing an index for distance of detection provides a weight for each bat species’ activity when they are aggregated to produce a bat community metric, such as the widely used “total activity”.


1985 ◽  
Vol 20 (3) ◽  
pp. 340-344
Author(s):  
M. C. Bell ◽  
R. G. Luttrell

The construction of walk-in controlled environmental chambers that achieve high accuracy at low cost is described. These chambers are capable of maintaining air temperatures at 15 - 35° ± 0.5°C. Long term (weekly) humidity stability averages 75% RH at ±6%. The described units are useful for large-scale bioassay experiments.


2013 ◽  
Vol 703 ◽  
pp. 111-114
Author(s):  
Yin Lin Wu ◽  
Hai Yan Zhao ◽  
Fu Shen Li

The fabrication and operation of a new thick film type of limiting current oxygen sensor is demonstrated that utilizes yttria (8% mol) stabilized zirconia (YSZ) as oxygen ion conducting solid electrolytes and dense La0.8Sr0.2CoO3(LSC) as diffusion barrier. The oxygen sensor shows a near linear response between 0 to 10.5% O2in argon at 1023K. The advantages of the sensor are simple construction, low cost and potential long term stability.


2014 ◽  
Vol 47 ◽  
pp. 10-16 ◽  
Author(s):  
Judith G.M. Rosmalen ◽  
Ido P. Kema ◽  
Stefan Wüst ◽  
Claude van der Ley ◽  
Sipke T. Visser ◽  
...  

2008 ◽  
Vol 368-372 ◽  
pp. 263-264
Author(s):  
Yin Lin Wu ◽  
Ling Wang ◽  
Fu Shen Li ◽  
Yan Qin Zhao

A thick film type of limiting current oxygen sensor which uses yttria (8% mol) stabilized zirconia (YSZ) as oxygen ion conducting solid electrolytes and dense La0.8Sr0.2MnO3 (LSM) as diffusion barrier was developed successfully. The oxygen sensor showed excellent performance at oxygen concentrations ranging from 0 to 10 ppm. The advantages of the sensor are simple construction, low cost and potential long term stability.


2017 ◽  
Vol 114 (47) ◽  
pp. E10046-E10055 ◽  
Author(s):  
Tian-Ming Fu ◽  
Guosong Hong ◽  
Robert D. Viveros ◽  
Tao Zhou ◽  
Charles M. Lieber

Implantable electrical probes have led to advances in neuroscience, brain−machine interfaces, and treatment of neurological diseases, yet they remain limited in several key aspects. Ideally, an electrical probe should be capable of recording from large numbers of neurons across multiple local circuits and, importantly, allow stable tracking of the evolution of these neurons over the entire course of study. Silicon probes based on microfabrication can yield large-scale, high-density recording but face challenges of chronic gliosis and instability due to mechanical and structural mismatch with the brain. Ultraflexible mesh electronics, on the other hand, have demonstrated negligible chronic immune response and stable long-term brain monitoring at single-neuron level, although, to date, it has been limited to 16 channels. Here, we present a scalable scheme for highly multiplexed mesh electronics probes to bridge the gap between scalability and flexibility, where 32 to 128 channels per probe were implemented while the crucial brain-like structure and mechanics were maintained. Combining this mesh design with multisite injection, we demonstrate stable 128-channel local field potential and single-unit recordings from multiple brain regions in awake restrained mice over 4 mo. In addition, the newly integrated mesh is used to validate stable chronic recordings in freely behaving mice. This scalable scheme for mesh electronics together with demonstrated long-term stability represent important progress toward the realization of ideal implantable electrical probes allowing for mapping and tracking single-neuron level circuit changes associated with learning, aging, and neurodegenerative diseases.


2019 ◽  
Vol 7 (23) ◽  
pp. 13922-13927 ◽  
Author(s):  
Bo Peng ◽  
Zhihao Sun ◽  
Shuhong Jiao ◽  
Jie Li ◽  
Gongrui Wang ◽  
...  

Sodium-ion batteries are one of the most promising candidates for large-scale energy storage systems due to the low cost of sodium source and their similar working principle to lithium-ion batteries.


2006 ◽  
Vol 302-303 ◽  
pp. 398-404
Author(s):  
Ming Tang ◽  
Xiao Li ◽  
Tao Wang

According to abalone’s growth characteristics, artificial abalone reefs are invented in this paper. The trace elements are added in concrete. The proportion is fixed by test. Ocean alga adheres to reefs with them very well. The craft, matching optimization, curing terms in the island environment and concrete long-term stability in the ocean current are studied to solve the durability of reefs in the marine environment. It shows the durability of fishing reef by high performance, high function, and ecological concrete technology is reliable. Its strength is still increasing for one year and no damage has been found. It is feasible to use the complex admixture, high-quality fly ash, ultrafine silicon powder, surface-soaking-into water-hating material made by our own, adhering-shaking-compact molding equipment made by ourselves and solar-energy-curing technology. Ten thousands of large-scale artificial abalone reefs have been done. A large amount of marine organisms covered the reefs only after 40 days using.


Sign in / Sign up

Export Citation Format

Share Document