scholarly journals Overexpression of the adeB Efflux Pump Gene in Tigecycline-Resistant Acinetobacter baumannii Clinical Isolates and Its Inhibition by (+)Usnic Acid as an Adjuvant

Antibiotics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1037
Author(s):  
Nagaraju Bankan ◽  
Fathimunnisa Koka ◽  
Rajagopalan Vijayaraghavan ◽  
Sreekanth Reddy Basireddy ◽  
Selvaraj Jayaraman

Acinetobacter species are among the most life-threatening Gram-negative bacilli, causing hospital-acquired infections, and they are associated with high morbidity and mortality. They show multidrug resistance that acts via various mechanisms. In Acinetobacter baumannii, efflux pump-mediated resistance to many antimicrobial compounds, including tigecycline, has been widely reported. Natural compounds have been used for their various pharmacological properties, including anti-efflux pump activity. The present study aimed to evaluate the efflux pump-mediated resistance mechanism of Acinetobacter baumannii and the effect of (+)Usnic acid as an efflux pump inhibitor with tigecycline. For detecting the efflux pump activity of tigecycline-resistant Acinetobacter baumannii isolates, microbroth dilution method and real-time quantitative reverse transcription–polymerase chain reaction was used. (+)Usnic acid was added to tigecycline and tested by the checkerboard method to evaluate its efficacy as an efflux pump inhibitor. qRT-PCR analysis was carried out to show the downregulation of the efflux pump in the isolates. Out of 42 tigecycline-resistant Acinetobacter baumannii isolates, 19 showed efflux pump activity. All 19 strains expressed the adeB gene. (+)Usnic acid as an adjuvant showed better efficacy in lowering the minimum inhibitory concentration compared with the conventional efflux pump inhibitor, carbonyl cyanide phenylhydrazone.

2009 ◽  
Vol 58 (8) ◽  
pp. 1086-1091 ◽  
Author(s):  
Yagang Chen ◽  
Borui Pi ◽  
Hua Zhou ◽  
Yunsong Yu ◽  
Lanjuan Li

The susceptibility to triclosan of 732 clinical Acinetobacter baumannii isolates obtained from 25 hospitals in 16 cities in China from December 2004 to December 2005 was screened by using an agar dilution method. Triclosan MICs ranged between 0.015 and 16 mg l−1, and the MIC90 was 0.5 mg l−1, lower than the actual in-use concentration of triclosan. Twenty triclosan-resistant isolates (MICs ≥1 mg l−1) were characterized by antibiotic susceptibility, clonal relatedness, fabI mutation, fabI expression, and efflux pump phenotype and expression to elucidate the resistance mechanism of A. baumannii to triclosan. The resistance rates of triclosan-resistant isolates to imipenem, levofloxacin, amikacin and tetracycline were higher than those of triclosan-sensitive isolates. Triclosan resistance was artificially classified as low level (MICs 1–2 mg l−1) or high level (MICs ≥4 mg l−1). High-level triclosan resistance could be explained by a Gly95Ser mutation of FabI, whilst wild-type fabI was observed to be overexpressed in low-level resistant isolates. Active efflux did not appear to be a major reason for acquired triclosan resistance, but acquisition of resistance appeared to be dependent on a background of intrinsic triclosan efflux.


2020 ◽  
Vol 15 (5) ◽  
Author(s):  
Arezoo Bostanmaneshrad ◽  
Jamileh Norouzi ◽  
Gita Eslami ◽  
Ali Hashemi

Background: Efflux pump is a significant resistance mechanism in Staphylococcus aureus. A total of 100 patients with bacteremia from Shahid Beheshti University Hospitals of Tehran in Iran were tested for the expression of efflux pump genes, contributing to S. aureus antimicrobial resistance. Objectives: this study was conducted to identify resistance pattern, and to evaluate the inhibitory effect of efflux pump, MIC of ciprofloxacin, and expression levels of norA, norB, and norC efflux pump genes in the presence of an efflux pump inhibitor against MDR S. aureus. Methods: A total of 100 MRSA isolates were investigated in different hospitals of Shahid Beheshti University of Medical Sciences from April 2017-2018. Owing to new consensus guidelines from the Clinical and Laboratory Standards Institute (CLSI), both the Kirby-Bauer disk diffusion test and micro-dilution method were used to evaluate antimicrobial susceptibility. Efflux pump activity using carbonyl cyanide 3-chlorophenylhydrazone (CCCP) was identified as a chemical efflux pump inhibitor. E-test was used to determine Vancomycin-resistant antibiotic. Broth micro-dilution method for S. aureus isolates resistant to ciprofloxacin has been developed for minimum inhibitory concentration (MIC) of ciprofloxacin and CCCP and their composition. Quantitative Real-time Polymerase Chain Reaction (qRT-PCR) was used to investigate the expression level of norA, norB, and norC efflux pump genes. Results: A total of 38 of 45 MRSA isolates (84.4%) showed resistance to ciprofloxacin. Moreover, 100% of isolates had the norA and norB genes. Further, 95% of S. aureus isolates had the norC gene. According to this study, ciprofloxacin MIC has decreased by CCCP compared to ciprofloxacin. There was an increase in the expression level of norA, norB, and norC efflux pump genes in methicillin-resistant and ciprofloxacin-resistant S. aureus strains based on RT- PCR. In this study, four different spA types were obtained as the most prevalent type of spA by t037and t790 (23.3%) and t030 (14.1%) and t044 (12.2%). Conclusions: This study indicates that the prevalence of ciprofloxacin-resistant S. aureus strains has a rising trend among MRSA clinical isolates. The ability of S. aureus isolates to be converted into drug-resistant strains using efflux pump mechanism has become a widespread concern.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 577
Author(s):  
Douweh Leyla Gbian ◽  
Abdelwahab Omri

The eradication of Pseudomonas aeruginosa in cystic fibrosis patients has become continuously difficult due to its increased resistance to treatments. This study assessed the efficacy of free and liposomal gentamicin and erythromycin, combined with Phenylalanine arginine beta-naphthylamide (PABN), a broad-spectrum efflux pump inhibitor, against P. aeruginosa isolates. Liposomes were prepared and characterized for their sizes and encapsulation efficiencies. The antimicrobial activities of formulations were determined by the microbroth dilution method. Their activity on P. aeruginosa biofilms was assessed, and the effect of sub-inhibitory concentrations on bacterial virulence factors, quorum sensing (QS) signals and bacterial motility was also evaluated. The average diameters of liposomes were 562.67 ± 33.74 nm for gentamicin and 3086.35 ± 553.95 nm for erythromycin, with encapsulation efficiencies of 13.89 ± 1.54% and 51.58 ± 2.84%, respectively. Liposomes and PABN combinations potentiated antibiotics by reducing minimum inhibitory and bactericidal concentrations by 4–32 fold overall. The formulations significantly inhibited biofilm formation and differentially attenuated virulence factor production as well as motility. Unexpectedly, QS signal production was not affected by treatments. Taken together, the results indicate that PABN shows potential as an adjuvant of liposomal macrolides and aminoglycosides in the management of lung infections in cystic fibrosis patients.


2016 ◽  
Vol 60 (10) ◽  
pp. 5858-5866 ◽  
Author(s):  
Somanon Bhattacharya ◽  
Jack D. Sobel ◽  
Theodore C. White

ABSTRACTCandida albicansis a pathogenic fungus causing vulvovaginal candidiasis (VVC). Azole drugs, such as fluconazole, are the most common treatment for these infections. Recently, azole-resistant vaginalC. albicansisolates have been detected in patients with recurring and refractory vaginal infections. However, the mechanisms of resistance in vaginalC. albicansisolates have not been studied in detail. In oral and systemic resistant isolates, overexpression of the ABC transporters Cdr1p and Cdr2p and the major facilitator transporter Mdr1p is associated with resistance. Sixteen fluconazole-susceptible and 22 fluconazole-resistant vaginalC. albicansisolates were obtained, including six matched sets containing a susceptible and a resistant isolate, from individual patients. Using quantitative real-time reverse transcriptase PCR (qRT-PCR), 16 of 22 resistant isolates showed overexpression of at least one efflux pump gene, while only 1 of 16 susceptible isolates showed such overexpression. To evaluate the pump activity associated with overexpression, an assay that combined data from two separate fluorescent assays using rhodamine 6G and alanine β-naphthylamide was developed. The qRT-PCR results and activity assay results were in good agreement. This combination of two fluorescent assays can be used to study efflux pumps as resistance mechanisms in clinical isolates. These results demonstrate that efflux pumps are a significant resistance mechanism in vaginalC. albicansisolates.


2007 ◽  
Vol 51 (9) ◽  
pp. 3235-3239 ◽  
Author(s):  
Carmen E. DeMarco ◽  
Laurel A. Cushing ◽  
Emmanuel Frempong-Manso ◽  
Susan M. Seo ◽  
Tinevimbo A. A. Jaravaza ◽  
...  

ABSTRACT Efflux is an important resistance mechanism in Staphylococcus aureus, but its frequency in patients with bacteremia is unknown. Nonreplicate bloodstream isolates were collected over an 8-month period, and MICs of four common efflux pump substrates, with and without the broad-spectrum efflux pump inhibitor reserpine, were determined (n = 232). A reserpine-associated fourfold decrease in MIC was considered indicative of efflux. Strains exhibiting efflux of at least two of the four substrates were identified (“effluxing strains” [n = 114]). For these strains, MICs with or without reserpine for an array of typical substrates and the expression of mepA, mdeA, norA, norB, norC, and qacA/B were determined using quantitative real-time reverse transcription-PCR (qRT-PCR). A fourfold or greater increase in gene expression was considered significant. The most commonly effluxed substrates were ethidium bromide and chlorhexidine (100 and 96% of effluxing strains, respectively). qRT-PCR identified strains overexpressing mepA (5 [4.4%]), mdeA (13 [11.4%]), norA (26 [22.8%]), norB (29 [25.4%]), and norC (19 [16.7%]); 23 strains overexpressed two or more genes. Mutations probably associated with increased gene expression included a MepR-inactivating substitution and norA promoter region insertions or deletions. Mutations possibly associated with increased expression of the other analyzed genes were also observed. Effluxing strains comprised 49% of all strains studied (114/232 strains), with nearly half of these overexpressing genes encoding MepA, MdeA, and/or NorABC (54/114 strains). Reduced susceptibility to biocides may contribute to persistence on environmental surfaces, and efflux of drugs such as fluoroquinolones may predispose strains to high-level target-based resistance.


2015 ◽  
Vol 59 (5) ◽  
pp. 2720-2725 ◽  
Author(s):  
Dana R. Bowers ◽  
Henry Cao ◽  
Jian Zhou ◽  
Kimberly R. Ledesma ◽  
Dongxu Sun ◽  
...  

ABSTRACTAntimicrobial resistance amongAcinetobacter baumanniiis increasing worldwide, often necessitating combination therapy. The clinical utility of using minocycline with polymyxin B is not well established. In this study, we investigated the activity of minocycline and polymyxin B against 1 laboratory isolate and 3 clinical isolates ofA. baumannii. Minocycline susceptibility testing was performed with and without an efflux pump inhibitor, phenylalanine-arginine β-naphthylamide (PAβN). The intracellular minocycline concentration was determined with and without polymyxin B (0.5 μg/ml). Time-kill studies were performed over 24 h using approximately 106CFU/ml of each strain with clinically relevant minocycline concentrations (2 μg/ml and 8 μg/ml), with and without polymyxin B (0.5 μg/ml). Thein vivoefficacy of the combination was assessed in a neutropenic murine pneumonia model. Infected animals were administered minocycline (50 mg/kg), polymyxin B (10 mg/kg), or both to achieve clinically equivalent exposures in humans. A reduction in the minocycline MIC (≥4×) was observed in the presence of PAβN. The intracellular concentration andin vitrobactericidal effect of minocycline were both enhanced by polymyxin B. With 2 minocycline-susceptible strains, the bacterial burden in lung tissue at 24 h was considerably reduced by the combination compared to monotherapy with minocycline or polymyxin B. In addition, the combination prolonged survival of animals infected with a minocycline-susceptible strain. Polymyxin B increased the intracellular concentration of minocycline in bacterial cells and enhanced the bactericidal activity of minocycline, presumably due to efflux pump disruption. The clinical utility of this combination should be further investigated.


Author(s):  
Ghazale Amiri ◽  
Maryam Abbasi Shaye ◽  
Masoumeh Bahreini ◽  
Asghar Mafinezhad ◽  
Kiarash Ghazvini ◽  
...  

Background and Objectives: In recent years, reports of Acinetobacter strains resistant to all known antibiotics have caused a great concern in medical communities. Overexpression of efflux pumps is one of the major causes of resistance in bacteria. The aim of this study was to investigate the role of efflux pumps in conferring resistance to imipenem in clinically important Acinetobacter spp; Acinetobacter baumannii and Acinetobacter lwoffii. Materials and Methods: A total number of 46 clinical Acinetobacter isolates, including 33 A. baumannii and 13 A. lwoffii isolates, previously collected from Shahid Kamyab and Ghaem hospitals of Mashhad, Iran were used in this study. Imipenem susceptibility testing was carried out by the disc diffusion method. Imipenem minimum inhibitory concentration (MIC) for resistant Acinetobacter isolates were determined both in the presence and absence of the efflux pumps inhibitor, carbonyl cyanide 3-chlorophenylhydrazone (CCCP). Results: Resistance to imipenem was observed in 38 isolates including 30 A. baumannii and 8 A. lwoffii isolates. Experiments in the presence of CCCP showed a 2 to 16384 fold reduction in imipenem MICs in 14 A. baumannii and 2 A. lwoffii isolates. Conclusion: The results obtained showed high levels of resistance to imipenem and contribution of efflux pumps in conferring resistance in both Acinetobacter species in this study. Moreover, imipenem efflux mediated resistance highlights the importance of this mechanism not only in A. baumannii but also in non-baumannii Acinetobacter Spp. which have been neglected in antibiotic resistance studies.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lida Chen ◽  
Pinghai Tan ◽  
Jianming Zeng ◽  
Xuegao Yu ◽  
Yimei Cai ◽  
...  

BackgroundThis study aimed to examine the impact of an intervention carried out in 2011 to combat multi-drug resistance and outbreaks of imipenem-resistant Acinetobacter baumannii (IRAB), and to explore its resistance mechanism.MethodsA total of 2572 isolates of A. baumannii, including 1673 IRAB isolates, were collected between 2007 and 2014. An intervention was implemented to control A. baumannii resistance and outbreaks. Antimicrobial susceptibility was tested by calculating minimal inhibitory concentrations (MICs), and outbreaks were typed using pulsed-field gel electrophoresis (PFGE). Resistance mechanisms were explored by polymerase chain reaction (PCR) and whole genome sequencing (WGS).ResultsFollowing the intervention in 2011, the resistance rates of A. baumannii to almost all tested antibiotics decreased, from 85.3 to 72.6% for imipenem, 100 to 80.8% for ceftriaxone, and 45.0 to 6.9% for tigecycline. The intervention resulted in a decrease in the number (seven to five), duration (8–3 months), and departments (five to three) affected by outbreaks; no outbreaks occurred in 2011. After the intervention, only blaAMPC (76.47 to 100%) and blaTEM–1 (75.74 to 96.92%) increased (P < 0.0001); whereas blaGES–1 (32.35 to 3.07%), blaPER–1 (21.32 to 1.54%), blaOXA–58 (60.29 to 1.54%), carO (37.50 to 7.69%), and adeB (9.56 to 3.08%) decreased (P < 0.0001). Interestingly, the frequency of class B β-lactamase genes decreased from 91.18% (blaSPM–1) and 61.03% (blaIMP–1) to 0%, while that of class D blaOXA–23 increased to 96.92% (P < 0.0001). WGS showed that the major PFGE types causing outbreaks each year (type 01, 11, 18, 23, 26, and 31) carried the same resistance genes (blaKPC–1, blaADC–25, blaOXA–66, and adeABC), AdeR-S mutations (G186V and A136V), and a partially blocked porin channel CarO. Meanwhile, plasmids harboring blaOXA–23 were found after the intervention.ConclusionThe intervention was highly effective in reducing multi-drug resistance of A. baumannii and IRAB outbreaks in the long term. The resistance mechanisms of IRAB may involve genes encoding β-lactamases, efflux pump overexpression, outer membrane porin blockade, and plasmids; in particular, clonal spread of blaOXA–23 was the major cause of outbreaks. Similar interventions may also help reduce bacterial resistance rates and outbreaks in other hospitals.


Sign in / Sign up

Export Citation Format

Share Document