scholarly journals Impact of an Intervention to Control Imipenem-Resistant Acinetobacter baumannii and Its Resistance Mechanisms: An 8-Year Survey

2021 ◽  
Vol 11 ◽  
Author(s):  
Lida Chen ◽  
Pinghai Tan ◽  
Jianming Zeng ◽  
Xuegao Yu ◽  
Yimei Cai ◽  
...  

BackgroundThis study aimed to examine the impact of an intervention carried out in 2011 to combat multi-drug resistance and outbreaks of imipenem-resistant Acinetobacter baumannii (IRAB), and to explore its resistance mechanism.MethodsA total of 2572 isolates of A. baumannii, including 1673 IRAB isolates, were collected between 2007 and 2014. An intervention was implemented to control A. baumannii resistance and outbreaks. Antimicrobial susceptibility was tested by calculating minimal inhibitory concentrations (MICs), and outbreaks were typed using pulsed-field gel electrophoresis (PFGE). Resistance mechanisms were explored by polymerase chain reaction (PCR) and whole genome sequencing (WGS).ResultsFollowing the intervention in 2011, the resistance rates of A. baumannii to almost all tested antibiotics decreased, from 85.3 to 72.6% for imipenem, 100 to 80.8% for ceftriaxone, and 45.0 to 6.9% for tigecycline. The intervention resulted in a decrease in the number (seven to five), duration (8–3 months), and departments (five to three) affected by outbreaks; no outbreaks occurred in 2011. After the intervention, only blaAMPC (76.47 to 100%) and blaTEM–1 (75.74 to 96.92%) increased (P < 0.0001); whereas blaGES–1 (32.35 to 3.07%), blaPER–1 (21.32 to 1.54%), blaOXA–58 (60.29 to 1.54%), carO (37.50 to 7.69%), and adeB (9.56 to 3.08%) decreased (P < 0.0001). Interestingly, the frequency of class B β-lactamase genes decreased from 91.18% (blaSPM–1) and 61.03% (blaIMP–1) to 0%, while that of class D blaOXA–23 increased to 96.92% (P < 0.0001). WGS showed that the major PFGE types causing outbreaks each year (type 01, 11, 18, 23, 26, and 31) carried the same resistance genes (blaKPC–1, blaADC–25, blaOXA–66, and adeABC), AdeR-S mutations (G186V and A136V), and a partially blocked porin channel CarO. Meanwhile, plasmids harboring blaOXA–23 were found after the intervention.ConclusionThe intervention was highly effective in reducing multi-drug resistance of A. baumannii and IRAB outbreaks in the long term. The resistance mechanisms of IRAB may involve genes encoding β-lactamases, efflux pump overexpression, outer membrane porin blockade, and plasmids; in particular, clonal spread of blaOXA–23 was the major cause of outbreaks. Similar interventions may also help reduce bacterial resistance rates and outbreaks in other hospitals.

2019 ◽  
Vol 18 (22) ◽  
pp. 1926-1936 ◽  
Author(s):  
Akinwale Ajayi David ◽  
Shang Eun Park ◽  
Keykavous Parang ◽  
Rakesh Kumar Tiwari

The menace of multi-drug resistance by bacterial pathogens that are responsible for infectious diseases in humans and animals cannot be over-emphasized. Many bacteria develop resistance to antibiotics by one or more combination of resistance mechanisms namely, efflux pump activation thereby reducing bacteria intracellular antibiotic concentration, synthesizing a protein that protects target site causing poor antibiotic affinity to the binding site, or mutations in DNA and topoisomerase gene coding that alters residues in the binding sites. The ability to use a combination of these resistance mechanisms among others creates a phenomenon known as antimicrobial drug resistance. The development of a new class of antibiotics to address bacterial resistance will require many resources, such as time-consuming effort and high cost associated with commercial risk. Hence, the researchers have adopted a strategic approach to enhance the antibacterial efficacy of existing antibiotics by conjugation or combination of existing antibiotics. A number of peptides have become known as antibacterial, cell-penetrating, or membrane-active agents. Antibiotics-Peptide Conjugates (APCs) are a combination of known antibiotics with a peptide connected through a linker. The rationale is to produce an alternative multifunctional antimicrobial compound that will elicit synergistic antibacterial activities while reducing known shortcomings of antibiotics or peptides, such as cellular penetration, serum instability, cytotoxicity, hemolysis, and instability in high salt conditions. In this review, we overview APCs which are used, as a strategy to combat the menace of multi-drug resistance of bacterial pathogens. Furthermore, we explain the focus area of adopted APC strategies and physicochemical properties data that show how they can be used to improve antibacterial efficacy.


2009 ◽  
Vol 58 (8) ◽  
pp. 1086-1091 ◽  
Author(s):  
Yagang Chen ◽  
Borui Pi ◽  
Hua Zhou ◽  
Yunsong Yu ◽  
Lanjuan Li

The susceptibility to triclosan of 732 clinical Acinetobacter baumannii isolates obtained from 25 hospitals in 16 cities in China from December 2004 to December 2005 was screened by using an agar dilution method. Triclosan MICs ranged between 0.015 and 16 mg l−1, and the MIC90 was 0.5 mg l−1, lower than the actual in-use concentration of triclosan. Twenty triclosan-resistant isolates (MICs ≥1 mg l−1) were characterized by antibiotic susceptibility, clonal relatedness, fabI mutation, fabI expression, and efflux pump phenotype and expression to elucidate the resistance mechanism of A. baumannii to triclosan. The resistance rates of triclosan-resistant isolates to imipenem, levofloxacin, amikacin and tetracycline were higher than those of triclosan-sensitive isolates. Triclosan resistance was artificially classified as low level (MICs 1–2 mg l−1) or high level (MICs ≥4 mg l−1). High-level triclosan resistance could be explained by a Gly95Ser mutation of FabI, whilst wild-type fabI was observed to be overexpressed in low-level resistant isolates. Active efflux did not appear to be a major reason for acquired triclosan resistance, but acquisition of resistance appeared to be dependent on a background of intrinsic triclosan efflux.


2007 ◽  
Vol 79 (12) ◽  
pp. 2143-2153 ◽  
Author(s):  
John B. Bremner

Bacteria use a number of resistance mechanisms to counter the antibacterial challenge, and one of these is the expression of transmembrane protein-based efflux pumps which can pump out antibacterials from within the cells, thus lowering the antibacterial concentration to nonlethal levels. For example, in S. aureus, the NorA pump can pump out the antibacterial alkaloid berberine and ciprofloxacin. One general strategy to reduce the health threat of resistant bacteria is to block a major bacterial resistance mechanism at the same time as interfering with another bacterial pathway or target site. New developments of this approach in the context of dual-action prodrugs and dual-action (or hybrid) drugs in which one action is targeted at blocking the NorA efflux pump and the second action at an alternative bacterial target site (or sites) for the antibacterial action are discussed. The compounds are based on a combination of 2-aryl-5-nitro-1H-indole derivatives (as the NorA efflux pump blocking component) and derivatives of berberine. General design principles, syntheses, antibacterial testing, and preliminary work on modes of action studies are discussed.


2018 ◽  
Vol 25 (5) ◽  
pp. 294-300 ◽  
Author(s):  
Rodrigo P dos Santos ◽  
Camila H Dalmora ◽  
Stephani A Lukasewicz ◽  
Otávio Carvalho ◽  
Caroline Deutschendorf ◽  
...  

Introduction Telemedicine technologies are increasingly being incorporated into infectious disease practice. We aimed to demonstrate the impact of antimicrobial stewardship through telemedicine on bacterial resistance rates. Methods We conducted a quasi-experimental study in a 220-bed hospital in southern Brazil. An antimicrobial stewardship program incorporating the use of telemedicine was implemented. Resistance and antimicrobial consumption rates were determined and analysed using a segmented regression model. Results After the intervention, the rate of appropriate antimicrobial prescription increased from 51.4% at baseline to 81.4%. Significant reductions in the consumption of fluoroquinolones (level change, β = −0.80; P < 0.01; trend change, β = −0.01; P = 0.98), first-generation cephalosporins (level change, β = −0.91; P < 0.01; trend change, β = +0.01; P = 0.96), vancomycin (level change, β = −0.47; P = 0.04; trend change, β = +0.17; P = 0.66) and polymyxins (level change, β = −0.15; P = 0.56; trend change, β = −1.75; P < 0.01) were identified. There was an increase in the consumption of amoxicillin + clavulanate (level change, β = +0.84; P < 0.01; trend change, β = +0.14; P = 0.41) and cefuroxime (level change, β = +0.21; P = 0.17; trend change, β = +0.66; P = 0.02). A significant decrease in the rate of carbapenem-resistant Acinetobacter spp. isolation (level change, β = +0.66; P = 0.01; trend change, β = −1.26; P < 0.01) was observed. Conclusions Telemedicine, which provides a tool for decision support and immediate access to experienced specialists, can promote better antibiotic selection and reductions in bacterial resistance.


2013 ◽  
Vol 7 (04) ◽  
pp. 323-328 ◽  
Author(s):  
Bruno Silvester Lopes ◽  
Lucia Gallego ◽  
Sebastian Giles Becket Amyes

Introduction: Acinetobacter baumannii is opportunistic in debilitated hospitalised patients. Because information from some South American countries was previously lacking, this study examined the emergence of multi-resistant A. baumannii in three hospitals in Cochabamba, Bolivia, from 2008 to 2009. Methodology: Multiplex PCR was used to identify the main resistance genes in 15 multi-resistant A. baumannii isolates. RT-PCR was used to measure gene expression. The genetic environment of these genes was also analysed by PCR amplification and sequencing. Minimum inhibitory concentrations were determined for key antibiotics and some were determined in the presence of an efflux pump inhibitor, 1-(1-napthylmethyl) piperazine. Results: Fourteen strains were found to be multi-resistant. Each strain was found to have the blaOXA-58 gene with the ISAba3-like element upstream, responsible for over-expression of the latter and subsequent carbapenem resistance. Similarly, ISAba1, upstream of the blaADC gene caused over-expression of the latter and cephalosporin resistance; mutations in the gyrA(Ser83 to Leu) and parC (Ser-80 to Phe) genes were commensurate with fluoroquinolone resistance. In addition, the adeA, adeB efflux genes were over-expressed. All 15 isolates were positive for at least two aminoglycoside resistance genes. Conclusion: This is one of the first reports analyzing the multi-drug resistance profile of A. baumannii strains isolated in Bolivia and shows that the over-expression of theblaOXA-58, blaADC and efflux genes together with aminoglycoside modifying enzymes and mutations in DNA topoisomerases are responsible for the multi-resistance of the bacteria and the subsequent difficulty in treating infections caused by them.


2021 ◽  
pp. 15-23

Introduction: The aim of the study was the analysis of occurrence of genetic determinants of multi-drug resistance and the assessment of genetic relationship among Acinetobacter baumannii strains. Methods: Multiplex-PCR method was performed in order to: (1) confirm the phenotypic identification and (2) detect the presence of CHDL oxacillinases in the group of thirty A.baumannii strains. Further PCR studies included the analysis of the occurrence of genetic determinants associated with efflux pump, insertion sequence and biofilm formation. The relationship between bacterial strains was assayed using 6 primers in RAPD-PCR method. Results: Detection of the blaOXA-51-like gene confirmed that the strains belong to the A. baumannii species. In the multiplex-PCR, the presence of the blaOXA-23-like and blaOXA-40-like genes was detected in 3 (10%) and 27 (90%) isolates, respectively. Moreover, some strains showed the coexistence of the blaOXA-51-like and blaOXA-23-like genes (10%, n=3) or blaOXA-51-like and blaOXA-40-like (90%, n=27). In the group of analysed strains the presence of the efflux pump gene (adeA) and the insertion sequence ISAba1 were demonstrated in all tested isolates. Biofilm-related genes (abaI, csuE) were found in 100% and 97% (n=29) tested strains adequately. The RAPD-PCR studies revealed the presence of 10 unrelated genotypes. Conclusions: The obtained results suggest that the phenomenon of multi-drug resistance in the studied A. baumannii strains could be attributed to the occurrence of CHDL oxacillinases, AdeABC efflux pump, insertion sequence ISAba1 and the biofilm formation.


2022 ◽  
Vol 12 ◽  
Author(s):  
Brandon Robin ◽  
Marion Nicol ◽  
Hung Le ◽  
Ali Tahrioui ◽  
Annick Schaumann ◽  
...  

Acinetobacter baumannii has emerged as one of the most problematic bacterial pathogens responsible for hospital-acquired and community infections worldwide. Besides its high capacity to acquire antibiotic resistance mechanisms, it also presents high adhesion abilities on inert and living surfaces leading to biofilm development. This lifestyle confers additional protection against various treatments and allows it to persist for long periods in various hospital niches. Due to their remarkable antimicrobial tolerance, A. baumannii biofilms are difficult to control and ultimately eradicate. Further insights into the mechanism of biofilm development will help to overcome this challenge and to develop novel antibiofilm strategies. To unravel critical determinants of this sessile lifestyle, the proteomic profiles of two A. baumannii strains (ATTC17978 and SDF) grown in planktonic stationary phase or in mature solid–liquid (S-L) biofilm were compared using a semiquantitative proteomic study. Of interest, among the 69 common proteins determinants accumulated in the two strains at the S-L interface, we sorted out the MacAB-TolC system. This tripartite efflux pump played a role in A. baumannii biofilm formation as demonstrated by using ΔmacAB-tolC deletion mutant. Complementary approaches allowed us to get an overview of the impact of macAB-tolC deletion in A. baumannii physiology. Indeed, this efflux pump appeared to be involved in the envelope stress response occurring in mature biofilm. It contributes to maintain wild type (WT) membrane rigidity and provides tolerance to high osmolarity conditions. In addition, this system is probably involved in the maintenance of iron and sulfur homeostasis. MacAB-TolC might help this pathogen face and adapt to deleterious conditions occurring in mature biofilms. Increasing our knowledge of A. baumannii biofilm formation will undoubtedly help us develop new therapeutic strategies to tackle this emerging threat to human health.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shixing Liu ◽  
Renchi Fang ◽  
Ying Zhang ◽  
Lijiang Chen ◽  
Na Huang ◽  
...  

Abstract Background The emergence of carbapenem-resistant and colistin-resistant ECC pose a huge challenge to infection control. The purpose of this study was to clarify the mechanism of the carbapenems and colistin co-resistance in Enterobacter cloacae Complex (ECC) strains. Results This study showed that the mechanisms of carbapenem resistance in this study are: 1. Generating carbapenemase (7 of 19); 2. The production of AmpC or ESBLs combined with decreased expression of out membrane protein (12 of 19). hsp60 sequence analysis suggested 10 of 19 the strains belong to colistin hetero-resistant clusters and the mechanism of colistin resistance is increasing expression of acrA in the efflux pump AcrAB-TolC alone (18 of 19) or accompanied by a decrease of affinity between colistin and outer membrane caused by the modification of lipid A (14 of 19). Moreover, an ECC strain co-harboring plasmid-mediated mcr-4.3 and blaNDM-1 has been found. Conclusions This study suggested that there is no overlap between the resistance mechanism of co-resistant ECC strains to carbapenem and colistin. However, the emergence of strain co-harboring plasmid-mediated resistance genes indicated that ECC is a potential carrier for the horizontal spread of carbapenems and colistin resistance.


2017 ◽  
Vol 15 (2) ◽  
pp. 140
Author(s):  
Yatnita Parama Cita ◽  
Dwi Hilda Putri

Tuberculosis (TB) is a serious disesase in the world. According to the WHO, it is estimated more than 3 million people die every year as a result of this infectious disease. One factor that causes diffi culty handling TB chemoteraphy is not effective against the bacteria Mycobacterium tuberculosis that causes TB . Effectiveness of treatment is often hampered by the emergence of bacterial resistance against M. Tuberculosis chemotherapy agents are given. From some research found that bacterial resistance may occur in more one type of chemotherapy agent also known as multi-drug resistance (MDR). Mycobacterium tuberculosis develop resistance mechanisms that are different from other bacteria in general. In prokaryotes, resistance is generally due to the transfer of genetic, either through plasmids,transposons and other. Reference sequence beta sub unit of RNAP protein M. Tuberculosis with accession number NP_215181.1 and M. tucerculosis rpoB gene with accession number NC_000962.3 used to obtain preliminary information from the data base www.ncbi.nlm.gov and www.uniprot.org . Mutation done according to several studies literature. Analysis of the composition, profi le, location and structure of protein using www.expasy.org, TMHMM and http://bioinf.cs.ucl.ac.uk/psipred. The primer design is done with Primer Design Program. Based on the analysis of mutation in the beta subunit of RNAP protein M. Tuberculosis, codon 531 (Ser ->Leu), it is known that mutations cause changes in some properties and structure of proteins. Possible changes affecting the nature of bacterial resistance to antibiotics rifampicin. However, further analysis needs to be done with the analysis of the docking technique.


Sign in / Sign up

Export Citation Format

Share Document