scholarly journals Host-Directed Therapy as a Novel Treatment Strategy to Overcome Tuberculosis: Targeting Immune Modulation

Antibiotics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 21 ◽  
Author(s):  
Sultan Ahmed ◽  
Rubhana Raqib ◽  
Guðmundur Hrafn Guðmundsson ◽  
Peter Bergman ◽  
Birgitta Agerberth ◽  
...  

Tuberculosis (TB) is one of the leading causes of mortality and morbidity, particularly in developing countries, presenting a major threat to the public health. The currently recommended long term treatment regimen with multiple antibiotics is associated with poor patient compliance, which in turn, may contribute to the emergence of multi-drug resistant TB (MDR-TB). The low global treatment efficacy of MDR-TB has highlighted the necessity to develop novel treatment options. Host-directed therapy (HDT) together with current standard anti-TB treatments, has gained considerable interest, as HDT targets novel host immune mechanisms. These immune mechanisms would otherwise bypass the antibiotic bactericidal targets to kill Mycobacterium tuberculosis (Mtb), which may be mutated to cause antibiotic resistance. Additionally, host-directed therapies against TB have been shown to be associated with reduced lung pathology and improved disease outcome, most likely via the modulation of host immune responses. This review will provide an update of host-directed therapies and their mechanism(s) of action against Mycobacterium tuberculosis.

2019 ◽  
Vol 20 (12) ◽  
pp. 2868 ◽  
Author(s):  
Eveline Torfs ◽  
Tatiana Piller ◽  
Paul Cos ◽  
Davie Cappoen

The ever-increasing incidence of drug-resistant Mycobacterium tuberculosis infections has invigorated the focus on the discovery and development of novel treatment options. The discovery and investigation of essential mycobacterial targets is of utmost importance. In addition to the discovery of novel targets, focusing on non-lethal pathways and the use of host-directed therapies has gained interest. These adjunctive treatment options could not only lead to increased antibiotic susceptibility of Mycobacterium tuberculosis, but also have the potential to avoid the emergence of drug resistance. Host-directed therapies, on the other hand, can also reduce the associated lung pathology and improve disease outcome. This review will provide an outline of recent opportunities.


2020 ◽  
Vol 9 ◽  
Author(s):  
Ioannis Leontsinis ◽  
Manos Mantzouranis ◽  
Panagiotis Tsioufis ◽  
Ioannis Andrikou ◽  
Costas Tsioufis

Hypertension remains a leading risk factor for cardiovascular mortality and morbidity globally despite the availability of effective and well-tolerated antihypertensive medications. Accumulating evidence suggests a more aggressive blood pressure regulation aimed at lower targets, particularly for selected patient groups. Our concepts of the optimal method for blood pressure measurement have radically changed, maintaining appropriate standard office measurements for initial assessment but relying on out-of-office measurement to better guide our decisions. Thorough risk stratification provides guidance in decision making; however, an individualized approach is highly recommended to prevent overtreatment. Undertreatment, on the other hand, remains a major concern and is mainly attributed to poor adherence and resistant or difficult-to-control forms of the disease. This review aims to present modern perspectives, novel treatment options, including innovative technological applications and developing interventional and pharmaceutical therapies, and the major concerns emerging from several years of research and epidemiological observations related to hypertension management.


2019 ◽  
Author(s):  
Gopinath Krishnamoorthy ◽  
Peggy Kaiser ◽  
Ulrike Abu Abed ◽  
January Weiner ◽  
Pedro Moura-Alves ◽  
...  

ABSTRACTLactate dehydrogenase A (LDHA) mediates interconversion of pyruvate and lactate. Increased lactate turnover is shared by malignant and immune cells. Hypoxic lung granuloma inMycobacterium tuberculosis-infected animals present elevated levels ofLdhaand lactate. Such alteration in metabolic milieu could influence the outcome of interactions betweenM. tuberculosisand its infected immune cells. Given the central role of LDHA for tumorigenicity, targeting lactate metabolism is a promising approach for cancer therapy. Here, we sought to determine the importance of LDHA for Tuberculosis (TB) disease progression and its potential as a host-directed therapeutic target. To this end, we administered FX11, a small-molecule NADH-competitive LDHA inhibitor, toM. tuberculosisinfected C57BL/6J mice and Nos2−/−mice with hypoxic necrotizing lung TB lesions mimicking human pathology more closely. FX11 did not inhibitM. tuberculosisgrowth in aerobic/hypoxic liquid culture, but modestly reduced the pulmonary bacterial burden in C57BL/6J mice. Intriguingly, FX11 administration limitedM. tuberculosisreplication and onset of necrotic lesions in Nos2−/−mice. In this model, Isoniazid (INH) monotherapy has been known to exhibit biphasic killing kinetics owing to the probable selection of an INH-tolerant subpopulation. This adverse effect was corrected by adjunct FX11 treatment and augmented the INH-derived bactericidal effect againstM. tuberculosis. Our findings therefore support LDHA as a potential target for host-directed adjunctive TB therapy and encourage further investigations into the underlying mechanism.IMPORTANCETuberculosis (TB) continues to be a global health threat of critical dimension. Standard TB drug treatment is prolonged and cumbersome. Inappropriate treatment or non-compliance results in emergence of drug-resistantMycobacterium tuberculosisstrains (MDR-TB) that render current treatment options ineffective. Targeting the host immune system as adjunct therapy to augment bacterial clearance is attractive as it is also expected to be effective against MDR-TB. Here, we provide evidence that pharmaceutical blockade of host lactate dehydrogenase A (LDHA) by a small-molecule limitsM. tuberculosisgrowth and reduces pathology. Notably, LDHA inhibition potentiates the effect of Isoniazid, a first-line anti-TB drug. Hence, its implications of our findings for short-term TB treatment are profound. In sum, our findings establish murine LDHA as a potential target for host-directed TB therapy.


2015 ◽  
Vol 156 (45) ◽  
pp. 1824-1833 ◽  
Author(s):  
Árpád Illés ◽  
Ádám Jóna ◽  
Zsófia Simon ◽  
Miklós Udvardy ◽  
Zsófia Miltényi

Introduction: Hodgkin lymphoma is a curable lymphoma with an 80–90% long-term survival, however, 30% of the patients develop relapse. Only half of relapsed patients can be cured with autologous stem cell transplantation. Aim: The aim of the authors was to analyze survival rates and incidence of relapses among Hodgkin lymphoma patients who were treated between January 1, 1980 and December 31, 2014. Novel therapeutic options are also summarized. Method: Retrospective analysis of data was performed. Results: A total of 715 patients were treated (382 men and 333 women; median age at the time of diagnosis was 38 years). During the studied period the frequency of relapsed patients was reduced from 24.87% to 8.04%. The numbers of autologous stem cell transplantations was increased among refracter/relapsed patients, and 75% of the patients underwent transplantation since 2000. The 5-year overall survival improved significantly (between 1980 and 1989 64.4%, between 1990 and 1999 82.4%, between 2000 and 2009 88.4%, and between 2010 and 2014 87.1%). Relapse-free survival did not change significantly. Conclusions: During the study period treatment outcomes improved. For relapsed/refractory Hodgkin lymphoma patients novel treatment options may offer better chance for cure. Orv. Hetil., 2015, 156(45), 1824–1833.


2020 ◽  
Vol 21 ◽  
Author(s):  
Aashish Sharma ◽  
Romila Manchanda ◽  
Faheem Hyder Pottoo ◽  
Ghulam Md. Ashraf

: Impressive research steps have been taken for the treatment of neurological disorders in the last few decades. Still effective treatments of brain related disorders are very less due to problems associated with crossing the blood brain barrier (BBB), non-specific therapies, and delay in functional recovery of central nervous system (CNS) after treatment. Striving for novel treatment options for neurological disorders, nanotechnology-derived materials, and devices have gained the ground due to inherent features of derivatization/encapsulation with drugs as per the neurological ailments and pharmacological targets. Facile developments/syntheses of the nanomaterials-drug conjugates have also been the driving force for researchers to get into this field. Moreover, the tunable size and hydro/lipophilicity of these nanomaterials are the added advantages that make these materials more acceptable for CNS disorders. These nano-neurotherapeutics (NNTs) systems provide the platform for diagnosis, theranostics, treatments, restoration of CNS disorders, and encourage the translation of NNTs from “bench to bedside”. Still, these techniques are in primary stages of medical development. This review describes the latest advancements and future scenarios of developmental and clinical aspects of polymeric NNTs.


Author(s):  
Deepa Parwani ◽  
Sushanta Bhattacharya ◽  
Akash Rathore ◽  
Chaitali Mallick ◽  
Vivek Asati ◽  
...  

: Tuberculosis is a disease caused by Mycobacterium tuberculosis (Mtb), affecting millions of people worldwide. The emergence of drug resistance is a major problem in the successful treatment of tuberculosis. Due to the commencement of MDR-TB (multi-drug resistance) and XDR-TB (extensively drug resistance), there is a crucial need for the development of novel anti-tubercular agents with improved characteristics such as low toxicity, enhanced inhibitory activity and short duration of treatment. In this direction, various heterocyclic compounds have been synthesized and screened against Mycobacterium tuberculosis. Among them, benzimidazole and imidazole containing derivatives found to have potential anti-tubercular activity. The present review focuses on various imidazole and benzimidazole derivatives (from 2015-2019) with their structure activity relationships in the treatment of tuberculosis.


Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 394
Author(s):  
Mariia Sergeeva ◽  
Ekaterina Romanovskaya-Romanko ◽  
Natalia Zabolotnyh ◽  
Anastasia Pulkina ◽  
Kirill Vasilyev ◽  
...  

New strategies providing protection against tuberculosis (TB) are still pending. The airborne nature of Mycobacterium tuberculosis (M.tb) infection assumes that the mucosal delivery of the TB vaccine could be a more promising strategy than the systemic route of immunization. We developed a mucosal TB vaccine candidate based on recombinant attenuated influenza vector (Flu/THSP) co-expressing truncated NS1 protein NS1(1–124) and a full-length TB10.4 and HspX proteins of M.tb within an NS1 protein open reading frame. The Flu/THSP vector was safe and stimulated a systemic TB-specific CD4+ and CD8+ T-cell immune response after intranasal immunization in mice. Double intranasal immunization with the Flu/THSP vector induced protection against two virulent M.tb strains equal to the effect of BCG subcutaneous injection in mice. In a guinea pig TB model, one intranasal immunization with Flu/THSP improved protection against M.tb when tested as a vaccine candidate for boosting BCG-primed immunity. Importantly, enhanced protection provided by a heterologous BCG-prime → Flu/THSP vector boost immunization scheme was associated with a significantly reduced lung and spleen bacterial burden (mean decrease of 0.77 lg CFU and 0.72 lg CFU, respectively) and improved lung pathology 8.5 weeks post-infection with virulent M.tb strain H37Rv.


Sign in / Sign up

Export Citation Format

Share Document