scholarly journals Blunted Reducing Power Generation in Erythrocytes Contributes to Oxidative Stress in Prepubertal Obese Children with Insulin Resistance

Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 244
Author(s):  
Álvaro González-Domínguez ◽  
Francisco Visiedo ◽  
Jesus Domínguez-Riscart ◽  
Beatriz Ruiz-Mateos ◽  
Ana Saez-Benito ◽  
...  

Childhood obesity, and specifically its metabolic complications, are related to deficient antioxidant capacity and oxidative stress. Erythrocytes are constantly exposed to multiple sources of oxidative stress; hence, they are equipped with powerful antioxidant mechanisms requiring permanent reducing power generation and turnover. Glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) are two key enzymes on the pentose phosphate pathway. Both enzymes supply reducing power by generating NADPH, which is essential for maintaining the redox balance within the cell and the activity of other antioxidant enzymes. We hypothesized that obese children with insulin resistance would exhibit blunted G6PDH and 6PGDH activities, contributing to their erythrocytes’ redox status imbalances. We studied 15 control and 24 obese prepubertal children, 12 of whom were insulin-resistant according to an oral glucose tolerance test (OGTT). We analyzed erythroid malondialdehyde (MDA) and carbonyl group levels as oxidative stress markers. NADP+/NADPH and GSH/GSSG were measured to determine redox status, and NADPH production by both G6PDH and 6PGDH was assayed spectrophotometrically to characterize pentose phosphate pathway activity. Finally, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and glutathione reductase (GR) activities were also assessed. As expected, MDA and carbonyl groups levels were higher at baseline and along the OGTT in insulin-resistant children. Both redox indicators showed an imbalance in favor of the oxidized forms along the OGTT in the insulin-resistant obese group. Additionally, the NADPH synthesis, as well as GR activity, were decreased. H2O2 removing enzyme activities were depleted at baseline in both obese groups, although after sugar intake only metabolically healthy obese participants were able to maintain their catalase activity. No change was detected in SOD activity between groups. Our results show that obese children with insulin resistance present higher levels of oxidative damage, blunted capacity to generate reducing power, and hampered function of key NADPH-dependent antioxidant enzymes.

2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Laura Dunn ◽  
Vanessa Fairfield ◽  
Shanay Daham ◽  
Juan Bolaños ◽  
Simon Heales

AbstractOxidative stress is known to be a key factor in the pathogenesis of Parkinson’s disease (PD). Neuronal redox status is maintained by glucose metabolism via the pentose-phosphate pathway and it is known that disruption of glucose metabolism is damaging to neurons. Accumulating evidence supports the idea that glucose metabolism is altered in PD and dysregulation of the pentose-phosphate pathway in this disease has recently been shown. In this review, we present an overview of the literature regarding neuronal glucose metabolism and PD, and discuss the implications of these findings for PD pathogenesis and possible future therapeutic avenues.


2003 ◽  
Vol 370 (3) ◽  
pp. 935-943 ◽  
Author(s):  
Stefania FILOSA ◽  
Annalisa FICO ◽  
Francesca PAGLIALUNGA ◽  
Marco BALESTRIERI ◽  
Almudena CROOKE ◽  
...  

Mouse embryonic stem (ES) glucose-6-phosphate (G6P) dehydrogenase-deleted cells (G6pdΔ), obtained by transient Cre recombinase expression in a G6pd-loxed cell line, are unable to produce G6P dehydrogenase (G6PD) protein (EC 1.1.1.42). These G6pdΔ cells proliferate in vitro without special requirements but are extremely sensitive to oxidative stress. Under normal growth conditions, ES G6pdΔ cells show a high ratio of NADPH to NADP+ and a normal intracellular level of GSH. In the presence of the thiol scavenger oxidant, azodicarboxylic acid bis[dimethylamide], at concentrations lethal for G6pdΔ but not for wild-type ES cells, NADPH and GSH in G6pdΔ cells dramatically shift to their oxidized forms. In contrast, wild-type ES cells are able to increase rapidly and intensely the activity of the pentose-phosphate pathway in response to the oxidant. This process, mediated by the [NADPH]/[NADP+] ratio, does not occur in G6pdΔ cells. G6PD has been generally considered essential for providing NADPH-reducing power. We now find that other reactions provide the cell with a large fraction of NADPH under non-stress conditions, whereas G6PD is the only NADPH-producing enzyme activated in response to oxidative stress, which can act as a guardian of the cell redox potential. Moreover, bacterial G6PD can substitute for the human enzyme, strongly suggesting that a relatively simple mechanism of enzyme kinetics underlies this phenomenon.


Cell Reports ◽  
2020 ◽  
Vol 30 (5) ◽  
pp. 1417-1433.e7 ◽  
Author(s):  
Michael M. Dubreuil ◽  
David W. Morgens ◽  
Kanji Okumoto ◽  
Masanori Honsho ◽  
Kévin Contrepois ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Ying Li ◽  
He Xian ◽  
Ya Xu ◽  
Yuan Zhu ◽  
Zhijie Sun ◽  
...  

Abstract Background Natural glycolysis encounters the decarboxylation of glucose partial oxidation product pyruvate into acetyl-CoA, where one-third of the carbon is lost at CO2. We previously constructed a carbon saving pathway, EP-bifido pathway by combining Embden-Meyerhof-Parnas Pathway, Pentose Phosphate Pathway and “bifid shunt”, to generate high yield acetyl-CoA from glucose. However, the carbon conversion rate and reducing power of this pathway was not optimal, the flux ratio of EMP pathway and pentose phosphate pathway (PPP) needs to be precisely and dynamically adjusted to improve the production of mevalonate (MVA). Result Here, we finely tuned the glycolytic flux ratio in two ways. First, we enhanced PPP flux for NADPH supply by replacing the promoter of zwf on the genome with a set of different strength promoters. Compared with the previous EP-bifido strains, the zwf-modified strains showed obvious differences in NADPH, NADH, and ATP synthesis levels. Among them, strain BP10BF accumulated 11.2 g/L of MVA after 72 h of fermentation and the molar conversion rate from glucose reached 62.2%. Second, pfkA was finely down-regulated by the clustered regularly interspaced short palindromic repeats interference (CRISPRi) system. The MVA yield of the regulated strain BiB1F was 8.53 g/L, and the conversion rate from glucose reached 68.7%. Conclusion This is the highest MVA conversion rate reported in shaken flask fermentation. The CRISPRi and promoter fine-tuning provided an effective strategy for metabolic flux redistribution in many metabolic pathways and promotes the chemicals production.


2015 ◽  
Vol 308 (4) ◽  
pp. F298-F308 ◽  
Author(s):  
Jinu Kim ◽  
Kishor Devalaraja-Narashimha ◽  
Babu J. Padanilam

Tp53-induced glycolysis and apoptosis regulator (TIGAR) activation blocks glycolytic ATP synthesis by inhibiting phosphofructokinase-1 activity. Our data indicate that TIGAR is selectively induced and activated in renal outermedullary proximal straight tubules (PSTs) after ischemia-reperfusion injury in a p53-dependent manner. Under severe ischemic conditions, TIGAR expression persisted through 48 h postinjury and induced loss of renal function and histological damage. Furthermore, TIGAR upregulation inhibited phosphofructokinase-1 activity, glucose 6-phosphate dehydrogenase (G6PD) activity, and induced ATP depletion, oxidative stress, autophagy, and apoptosis. Small interfering RNA-mediated TIGAR inhibition prevented the aforementioned malevolent effects and protected the kidneys from functional and histological damage. After mild ischemia, but not severe ischemia, G6PD activity and NADPH levels were restored, suggesting that TIGAR activation may redirect the glycolytic pathway into gluconeogenesis or the pentose phosphate pathway to produce NADPH. The increased level of NADPH maintained the level of GSH to scavenge ROS, resulting in a lower sensitivity of PST cells to injury. Under severe ischemia, G6PD activity and NADPH levels were reduced during reperfusion; however, blockade of TIGAR enhanced their levels and reduced oxidative stress and apoptosis. Collectively, these results demonstrate that inhibition of TIGAR may protect PST cells from energy depletion and apoptotic cell death in the setting of severe ischemia-reperfusion injury. However, under low ischemic burden, TIGAR activation induces the pentose phosphate pathway and autophagy as a protective mechanism.


2007 ◽  
Vol 79 (4) ◽  
pp. 649-663 ◽  
Author(s):  
Mariana Igoillo-Esteve ◽  
Dante Maugeri ◽  
Ana L. Stern ◽  
Paula Beluardi ◽  
Juan J. Cazzulo

Trypanosoma cruzi is highly sensitive to oxidative stress caused by reactive oxygen species. Trypanothione, the parasite's major protection against oxidative stress, is kept reduced by trypanothione reductase, using NADPH; the major source of the reduced coenzyme seems to be the pentose phosphate pathway. Its seven enzymes are present in the four major stages in the parasite's biological cycle; we have cloned and expressed them in Escherichia coli as active proteins. Glucose 6-phosphate dehydrogenase, which controls glucose flux through the pathway by its response to the NADP/NADPH ratio, is encoded by a number of genes per haploid genome, and is induced up to 46-fold by hydrogen peroxide in metacyclic trypomastigotes. The genes encoding 6-phosphogluconolactonase, 6-phosphogluconate dehydrogenase, transaldolase and transketolase are present in the CL Brener clone as a single copy per haploid genome. 6-phosphogluconate dehydrogenase is very unstable, but was stabilized introducing two salt bridges by site-directed mutagenesis. Ribose-5-phosphate isomerase belongs to Type B; genes encoding Type A enzymes, present in mammals, are absent. Ribulose-5-phosphate epimerase is encoded by two genes. The enzymes of the pathway have a major cytosolic component, although several of them have a secondary glycosomal localization, and also minor localizations in other organelles.


2018 ◽  
Vol 6 (3) ◽  
pp. 511-518 ◽  
Author(s):  
Marko Kostovski ◽  
Viktor Simeonovski ◽  
Kristina Mironska ◽  
Velibor Tasic ◽  
Zoran Gucev

BACKGROUND: In the past several decades, the increasing frequency of overweight and obese children and adolescents in the world has become a public health problem. It has contributed significantly to the already high tide of diabetes, cardiovascular and cerebrovascular diseases.AIM: To investigate the frequency of insulin resistance and to evaluate the metabolic profile of insulin resistant and non-insulin resistant obese children and adolescents.SUBJECTS AND METHODS: The study included 96 (45 boys, 51 girls) obese children and adolescents aged     4-17 years old (10.50 ± 2.87 years). Only participants with Body Mass Index ≥ 95 percentile were included.  We analysed sera for fasting insulin levels (FI), fasting serum triglycerides (TG), total serum cholesterol (TC), fasting plasma glucose (FPG) and plasma glucose 2 hours after the performance of the oral glucose tolerance test        (2-h G). Homeostatic model assessment for insulin resistance (HOMA-IR) index was calculated as fasting insulin concentration (microunits per millilitre) x fasting glucose concentration (millimolar)/22.5. The value of HOMA-IR above 3.16 was used as a cut-off value for both genders.RESULTS: Insulin resistance was determined in 58.33% of study participants. Insulin resistant participants had significantly higher level of 2-h G (p = 0.02), FI level (p = 0.000) as well as TG levels (p = 0.01), compared to non-insulin resistant group. Strikingly, 70.73% of the pubertal adolescents were insulin resistant in comparison to 49.09% of the preadolescents (p = 0.03). Significantly higher percentage of insulin-resistant participants were girls (p = 0.009). Moreover, a higher percentage of the girls (70.59%) than boys (44.44%) had HOMA-IR above 3.16 and had elevated FI levels (70.59% vs 48.89%). The difference in the frequency of insulin resistance among obese versus severely obese children and adolescents was not significant (p = 0.73, p > 0.05). Our study results also showed positive, but weak, correlation of HOMA-IR with age, FPG, TG and BMI of the participants (p < 0.05).CONCLUSION: Higher percentage of insulin-resistant participants was of female gender and was adolescents. In general, insulin resistant obese children and adolescents tend to have a worse metabolic profile in comparison to individuals without insulin resistance. It is of note that the highest insulin resistance was also linked with the highest concentrations of triglycerides.


2018 ◽  
Vol 31 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Paola Di Filippo ◽  
Alessandra Scaparrotta ◽  
Daniele Rapino ◽  
Tommaso de Giorgis ◽  
Marianna Immacolata Petrosino ◽  
...  

AbstractBackground:Recent findings have supposed that the underlying association between the increased prevalence of both asthma and obesity may be insulin resistance (IR).Methods:Insulin and glucose serum levels were analyzed to calculate the homeostatic model assessment of insulin resistance (HOMA-IR) for IR in 98 pre-pubertal children. Lung function and allergy status evaluation were performed. The study population was divided into four groups: (1) obese asthmatic children (ObA); (2) normal-weight asthmatic children (NwA); (3) normal-weight non-asthmatic children (Nw) and (4) obese non-asthmatic children (Ob).Results:Forced expiratory volume in 1 s (FEV1) was slightly lower in obese subjects compared with normal-weight subjects and forced vital capacity (FVC) appeared lower in asthmatics, whereas between non-asthmatics subjects, it was lower in the obese group than in the normal-weight one. The post hoc analysis revealed a statistically significant reduction in FEV1, peak expiratory flow (PEF), forced expiratory flows (FEF) between 50% and 25% of the FVC (FEF50and FEF25) between ObA and Nw and in FEV1, FVC, PEF, FEF50and FEF25between NwA and Nw, but no statistically significant differences of lung function parameters were observed between ObA and NwA. We found an inverse relationship between HOMA-IR and all spirometric parameters, although without any statistical significance. We also observed a significantly lower FVC in insulin-resistant children (HOMA-IR>95th percentile) (p=0.03).Conclusions:This study suggests that lung function could be early altered in obese children, already in pre-pubertal age. Although IR should not manifest its effects on lungs in pre-pubertal obese children, the prevention or treatment of obesity in the pre-pubertal period may prevent definitive negative effects on lungs.


2014 ◽  
Vol 306 (5) ◽  
pp. H709-H717 ◽  
Author(s):  
Claudio Vimercati ◽  
Khaled Qanud ◽  
Gianfranco Mitacchione ◽  
Danuta Sosnowska ◽  
Zoltan Ungvari ◽  
...  

In vitro studies suggested that glucose metabolism through the oxidative pentose phosphate pathway (oxPPP) can paradoxically feed superoxide-generating enzymes in failing hearts. We therefore tested the hypothesis that acute inhibition of the oxPPP reduces oxidative stress and enhances function and metabolism of the failing heart, in vivo. In 10 chronically instrumented dogs, congestive heart failure (HF) was induced by high-frequency cardiac pacing. Myocardial glucose consumption was enhanced by raising arterial glycemia to levels mimicking postprandial peaks, before and after intravenous administration of the oxPPP inhibitor 6-aminonicotinamide (80 mg/kg). Myocardial energy substrate metabolism was measured with radiolabeled glucose and oleic acid, and cardiac 8-isoprostane output was used as an index of oxidative stress. A group of five chronically instrumented, normal dogs served as control. In HF, raising glycemic levels from ∼80 to ∼170 mg/dL increased cardiac isoprostane output by approximately twofold, whereas oxPPP inhibition normalized oxidative stress and enhanced cardiac oxygen consumption, glucose oxidation, and stroke work. In normal hearts glucose infusion did not induce significant changes in cardiac oxidative stress. Myocardial tissue concentration of 6P-gluconate, an intermediate metabolite of the oxPPP, was significantly reduced by ∼50% in treated versus nontreated failing hearts, supporting the inhibitory effect of 6-aminonicotinamide. Our study indicates an important contribution of the oxPPP activity to cardiac oxidative stress in HF, which is particularly pronounced during common physiological changes such as postprandial glycemic peaks.


Sign in / Sign up

Export Citation Format

Share Document