scholarly journals An Evaluation of the Anti-Carcinogenic Response of Major Isothiocyanates in Non-Metastatic and Metastatic Melanoma Cells

Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 284
Author(s):  
Melina Mitsiogianni ◽  
Sotiris Kyriakou ◽  
Ioannis Anestopoulos ◽  
Dimitrios T. Trafalis ◽  
Maria V. Deligiorgi ◽  
...  

Malignant melanoma is one of the most deadly types of solid cancers, a property mainly attributed to its highly aggressive metastatic form. On the other hand, different classes of isothiocyanates, a class of phytochemicals, present in cruciferous vegetables have been characterized by considerable anti-cancer activity in both in vitro and in vivo experimental models. In the current study, we investigated the anti-cancer response of five isothiocyanates in an in vitro model of melanoma consisting of non-metastatic (A375, B16F-10) and metastatic (VMM1, Hs294T) malignant melanoma as well as non-melanoma epidermoid carcinoma (A431) and non-tumorigenic melanocyte-neighboring keratinocyte (HaCaT) cells. Our aim was to compare different endpoints of cytotoxicity (e.g., reactive oxygen species, intracellular glutathione content, cell cycle growth arrest, apoptosis and necrosis) descriptive of an anti-cancer response between non-metastatic and metastatic melanoma as well as non-melanoma epidermoid carcinoma and non-tumorigenic cells. Our results showed that exposure to isothiocyanates induced an increase in intracellular reactive oxygen species and glutathione contents between non-metastatic and metastatic melanoma cells. The distribution of cell cycle phases followed a similar pattern in a manner where non-metastatic and metastatic melanoma cells appeared to be growth arrested at the G2/M phase while elevated levels of metastatic melanoma cells were shown to be at sub G1 phase, an indicator of necrotic cell death. Finally, metastatic melanoma cells were more sensitive apoptosis and/or necrosis as higher levels were observed compared to non-melanoma epidermoid carcinoma and non-tumorigenic cells. In general, non-melanoma epidermoid carcinoma and non-tumorigenic cells were more resistant under any experimental exposure condition. Overall, our study provides further evidence for the potential development of isothiocyanates as promising anti-cancer agents against non-metastatic and metastatic melanoma cells, a property specific for these cells and not shared by non-melanoma epidermoid carcinoma or non-tumorigenic melanocyte cells.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Wentao Hu ◽  
Lin Zhu ◽  
Weiwei Pei ◽  
Shuxian Pan ◽  
Ziyang Guo ◽  
...  

Radioresistance is the major obstacle in the radiotherapy of the malignant melanoma. Thus, it is of importance to increase the radiosensitivity of melanoma cells. In the present study, the radioresistant melanoma cell line OCM-1 with inducible overexpression of Ras-related C3 botulinum toxin substrate 2 was established based on a radiation-inducible early growth response gene (Egr-1) promoter. The effects of Ras-related C3 botulinum toxin substrate 2 overexpression on the radiosensitivity of melanoma cells exposed to either X-rays or carbon ion beams were evaluated in cultured cells as well as xenograft tumor models. In addition, both reactive oxygen species yield and the NADPH oxidase activity were measured in the irradiated melanoma cells. It was found that the radiation-inducible overexpression of Ras-related C3 botulinum toxin substrate 2 sensitized the melanoma cells to both X-rays and carbon ion irradiation by enhancing the NADPH oxidase activity and the subsequent reactive oxygen species production. Besides, the overexpression of Ras-related C3 botulinum toxin substrate 2 enhanced the tumor-killing effect of radiotherapy in xenograft tumors significantly. The results of this study indicate that Ras-related C3 botulinum toxin substrate 2 is promising in increasing the radiosensitivity of melanoma cells, which provides experimental evidence and theoretical basis for clinical radiosensitization of the malignant melanoma.


Drug Research ◽  
2020 ◽  
Vol 70 (12) ◽  
pp. 563-569
Author(s):  
Bahareh Mohammadi Jobani ◽  
Elham Mohebi ◽  
Nowruz Najafzadeh

Abstract Background Malignant melanoma is a common form of skin cancer that contains different cell types recognized by various cell surface markers. Dacarbazine-based combination chemotherapy is frequently used for the treatment of melanoma. Despite its potent anticancer properties, resistance to dacarbazine develops in malignant melanoma. Here, we aim to improve response to dacarbazine therapy by pretreatment with all-trans retinoic acid (ATRA) in CD117+ melanoma cells. Methods The CD117+ melanoma cells were sorted from A375 malignant melanoma cell line using magnetic-activated cell sorting (MACS). The cell viability was examined by cell proliferation assay (MTT). Apoptosis was determined by acridine orange/ ethidium bromide staining. Indeed, we performed flow cytometry to evaluate the cell cycle arrest. Results Here, the CD117+ melanoma cells were incubated with various concentrations of ATRA, dacarbazine, and their combination to determine IC50 values. We found that 20 µM ATRA treatment followed by dacarbazine was found to be more effective than dacarbazine alone. There was an indication that the combination of ATRA with dacarbazine (ATRA/dacarbazine) caused more apoptosis and necrosis in the melanoma cells (P<0.05). Furthermore, ATRA/dacarbazine treatment inhibited the cell at the G0/G1 phase, while dacarbazine alone inhibited the cells at S phase. Conclusion Collectively, combined treatment with ATRA and dacarbazine induced more apoptosis and enhanced the cell cycle arrest of CD117+ melanoma cells. These results suggested that ATRA increased the sensitivity of melanoma cells to the effect of dacarbazine.


2001 ◽  
Vol 280 (3) ◽  
pp. C659-C676 ◽  
Author(s):  
Sukhdev S. Brar ◽  
Thomas P. Kennedy ◽  
A. Richard Whorton ◽  
Anne B. Sturrock ◽  
Thomas P. Huecksteadt ◽  
...  

The transcription factor nuclear factor-κB (NF-κB) is constitutively activated in malignancies from enhanced activity of inhibitor of NF-κB (IκB) kinase, with accelerated IκBα degradation. We studied whether redox signaling might stimulate these events. Cultured melanoma cells generated superoxide anions (O[Formula: see text]) without serum stimulation. O[Formula: see text]generation was reduced by the NAD(P)H:quinone oxidoreductase (NQO) inhibitor dicumarol and the quinone analog capsaicin, suggesting that electron transfer from NQO through a quinone-mediated pathway may be an important source of endogenous reactive oxygen species (ROS) in tumor cells. Treatment of malignant melanoma cells with the H2O2 scavenger catalase, the sulfhydryl donor N-acetylcysteine, the glutathione peroxidase mimetic ebselen, or dicumarol decreased NF-κB activation. Catalase, N-acetylcysteine, ebselen, dicumarol, and capsaicin also inhibited growth of melanoma and other malignant cell lines. These results raise the possibility that ROS produced endogenously by mechanisms involving NQO can constitutively activate NF-κB in an autocrine fashion and suggest the potential for new antioxidant strategies for interruption of oxidant signaling of melanoma cell growth.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Ke He ◽  
Lu Wu ◽  
Qianshan Ding ◽  
Farhan Haider ◽  
Honggang Yu ◽  
...  

At present, apatinib is considered a new generation agent for the treatment of patients with gastric cancer. However, the effects of apatinib on pancreatic cancer have not been clarified. This study investigated the impact of apatinib on the biological function of pancreatic cancer cells and the potential mechanism involved in this process. Using the Cell Counting Kit-8 method, we confirmed that apatinib treatment inhibited cell proliferation in vitro. Moreover, the migration rate of pancreatic cells was inhibited. The effects of apatinib on apoptosis and cell cycle distribution of pancreatic carcinoma cells were detected by flow cytometry. The number of apoptotic cells was significantly increased, and the cell cycle was altered. Furthermore, we demonstrated that apatinib inhibited the expression of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor, and markers of the phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling pathway, which increased the levels of reactive oxygen species in vitro. Apatinib significantly inhibited the biological function of pancreatic cancer cells. It promoted apoptosis, downregulated the expression of HIF-1α, and increased the levels of reactive oxygen species.


Development ◽  
1991 ◽  
Vol 113 (2) ◽  
pp. 551-560 ◽  
Author(s):  
M.M. Nasr-Esfahani ◽  
M.H. Johnson

The increase in production of reactive oxygen species such as H2O2 at the G2/M phase of the second cell cycle may be related to the in vitro block to development of mouse 2-cell embryos. The occurrence of the H2O2 rise is independent of the activation of the embryonic genome and of passage through the S, G2 and M phases of the first cell cycle and G1 and M phases of the second cell cycle, but does require the activation of the unfertilized oocyte. The H2O2 is produced via dismutation of superoxide by the enzyme superoxide dismutase. Production of superoxide via mitochondrial, NADPH-oxidase and xanthine/xanthine oxidase systems has been investigated. The evidence suggests that superoxide, and thereby H2O2, is produced by the xanthine/xanthine oxidase system, but an involvement of the other superoxide generating systems has not been excluded. The relation between H2O2 and development in vitro is discussed.


Sign in / Sign up

Export Citation Format

Share Document