scholarly journals Melatonin for the Management of Preeclampsia: A Review

Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 376
Author(s):  
Annie Langston-Cox ◽  
Sarah A. Marshall ◽  
Daisy Lu ◽  
Kirsten R. Palmer ◽  
Euan M. Wallace

Preeclampsia is a disease specific to pregnancy characterised by new-onset hypertension with maternal organ dysfunction and/or fetal growth restriction. It remains a major cause of maternal and perinatal morbidity and mortality. For sixty years, antihypertensives have been the mainstay of treating preeclampsia and only recently have insights into the pathogenesis of the disease opened new avenues for novel therapies. Melatonin is one such option, an endogenous and safe antioxidant, that may improve the maternal condition in preeclampsia while protecting the fetus from a hostile intrauterine environment. Here we review the evidence for melatonin as a possible adjuvant therapy for preeclampsia, including in vitro evidence supporting a role for melatonin in protecting the human placenta, preclinical models, vascular studies, and clinical studies in hypertension and pregnancy.

2021 ◽  

Various preclinical models that mimic the clinical causes of acute respiratory distress syndrome (ARDS) have been used to better understand the mechanisms of acute lung injury and its repair and to investigate novel therapies targeting such mechanisms. Despite important preclinical and clinical research efforts in recent decades, few candidate therapies with promising preclinical effects have been successfully translated into the clinical scenario, which could be attributable to the intrinsic limitations of the models as well as to the incorrect identification of appropriate phenotypes of patients to target with novel therapies that have proven beneficial in select preclinical models. However, current translational research strategies based on the use of multiple complementary preclinical and clinical models hold the promise of revolutionizing intensive care by using granular knowledge that should allow for a better diagnosis, greater predictability of the disease course, and the development of targeted therapies while ensuring patient safety through reduced adverse effects. Our goal was to summarize the strengths and limitations of the available models of ARDS, including animal, in vitro, and clinical models, and to discuss the current challenges and perspectives for research.


Sinusitis ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 71-89
Author(s):  
Ganesh Chandra Jagetia

Oroxylum indicum, Sonapatha is traditionally used to treat asthma, biliousness, bronchitis, diarrhea, dysentery, fevers, vomiting, inflammation, leukoderma, skin diseases, rheumatoid arthritis, wound injury, and deworm intestine. This review has been written by collecting the relevant information from published material on various ethnomedicinal and pharmacological aspects of Sonapatha by making an internet, PubMed, SciFinder, Science direct, and Google Scholar search. Various experimental studies have shown that Sonapatha scavenges different free radicals and possesses alkaloids, flavonoids, cardio glycosides, tannins, sterols, phenols, saponins, and other phytochemicals. Numerous active principles including oroxylin A, chrysin, scutellarin, baicalein, and many more have been isolated from the different parts of Sonapatha. Sonapatha acts against microbial infection, cancer, hepatic, gastrointestinal, cardiac, and diabetic disorders. It is useful in the treatment of obesity and wound healing in in vitro and in vivo preclinical models. Sonapatha elevates glutathione, glutathione-s-transferase, glutathione peroxidase, catalase, and superoxide dismutase levels and reduces aspartate transaminase alanine aminotransaminase, alkaline phosphatase, lactate dehydrogenase, and lipid peroxidation levels in various tissues. Sonapatha activates the expression of p53, pRb, Fas, FasL, IL-12, and caspases and inhibited nuclear factor kappa (NF-κB), cyclooxygenase (COX-2), tumor necrosis factor (TNFα), interleukin (IL6), P38 activated mitogen-activated protein kinases (MAPK), fatty acid synthetase (FAS), sterol regulatory element-binding proteins 1c (SREBP-1c), proliferator-activated receptor γ2 (PPARγ2), glucose transporter (GLUT4), leptin, and HPV18 oncoproteins E6 and E7 at the molecular level, which may be responsible for its medicinal properties. The phytoconstituents of Sonapatha including oroxylin A, chrysin, and baicalein inhibit the replication of SARS-CoV-2 (COVID-19) in in vitro and in vivo experimental models, indicating its potential to contain COVID-19 infection in humans. The experimental studies in various preclinical models validate the use of Sonapatha in ethnomedicine and Ayurveda.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pijush Chakraborty ◽  
Gwladys Rivière ◽  
Shu Liu ◽  
Alain Ibáñez de Opakua ◽  
Rıza Dervişoğlu ◽  
...  

AbstractPathological aggregation of the protein tau into insoluble aggregates is a hallmark of neurodegenerative diseases. The emergence of disease-specific tau aggregate structures termed tau strains, however, remains elusive. Here we show that full-length tau protein can be aggregated in the absence of co-factors into seeding-competent amyloid fibrils that sequester RNA. Using a combination of solid-state NMR spectroscopy and biochemical experiments we demonstrate that the co-factor-free amyloid fibrils of tau have a rigid core that is similar in size and location to the rigid core of tau fibrils purified from the brain of patients with corticobasal degeneration. In addition, we demonstrate that the N-terminal 30 residues of tau are immobilized during fibril formation, in agreement with the presence of an N-terminal epitope that is specifically detected by antibodies in pathological tau. Experiments in vitro and in biosensor cells further established that co-factor-free tau fibrils efficiently seed tau aggregation, while binding studies with different RNAs show that the co-factor-free tau fibrils strongly sequester RNA. Taken together the study provides a critical advance to reveal the molecular factors that guide aggregation towards disease-specific tau strains.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1728
Author(s):  
Dinyadarshini Johnson ◽  
Sivakumar Thurairajasingam ◽  
Vengadesh Letchumanan ◽  
Kok-Gan Chan ◽  
Learn-Han Lee

The field of probiotic has been exponentially expanding over the recent decades with a more therapeutic-centered research. Probiotics mediated microbiota modulation within the microbiota–gut–brain axis (MGBA) have been proven to be beneficial in various health domains through pre-clinical and clinical studies. In the context of mental health, although probiotic research is still in its infancy stage, the promising role and potential of probiotics in various mental disorders demonstrated via in-vivo and in-vitro studies have laid a strong foundation for translating preclinical models to humans. The exploration of the therapeutic role and potential of probiotics in major depressive disorder (MDD) is an extremely noteworthy field of research. The possible etio-pathological mechanisms of depression involving inflammation, neurotransmitters, the hypothalamic–pituitary–adrenal (HPA) axis and epigenetic mechanisms potentially benefit from probiotic intervention. Probiotics, both as an adjunct to antidepressants or a stand-alone intervention, have a beneficial role and potential in mitigating anti-depressive effects, and confers some advantages compared to conventional treatments of depression using anti-depressants.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Thekkeparambil Chandrabose Srijaya ◽  
Padmaja Jayaprasad Pradeep ◽  
Rosnah Binti Zain ◽  
Sabri Musa ◽  
Noor Hayaty Abu Kasim ◽  
...  

Induced pluripotent stem cell-based therapy for treating genetic disorders has become an interesting field of research in recent years. However, there is a paucity of information regarding the applicability of induced pluripotent stem cells in dental research. Recent advances in the use of induced pluripotent stem cells have the potential for developing disease-specific iPSC linesin vitrofrom patients. Indeed, this has provided a perfect cell source for disease modeling and a better understanding of genetic aberrations, pathogenicity, and drug screening. In this paper, we will summarize the recent progress of the disease-specific iPSC development for various human diseases and try to evaluate the possibility of application of iPS technology in dentistry, including its capacity for reprogramming some genetic orodental diseases. In addition to the easy availability and suitability of dental stem cells, the approach of generating patient-specific pluripotent stem cells will undoubtedly benefit patients suffering from orodental disorders.


2018 ◽  
Author(s):  
Soo-Hyun Kim ◽  
Richard P. Redvers ◽  
Lap Hing Chi ◽  
Xiawei Ling ◽  
Andrew J. Lucke ◽  
...  

ABSTRACTBreast cancer brain metastasis remains largely incurable. While several mouse models have been developed to investigate the genes and mechanisms regulating breast cancer brain metastasis, these models often lack clinical relevance since they require the use of immune-compromised mice and/or are poorly metastatic to brain from the mammary gland. We describe the development and characterisation of an aggressive brain metastatic variant of the 4T1 syngeneic model (4T1Br4) that spontaneously metastasises to multiple organs, but is selectively more metastatic to the brain from the mammary gland than parental 4T1 tumours. By immunohistochemistry, 4T1Br4 tumours and brain metastases display a triple negative phenotype, consistent with the high propensity of this breast cancer subtype to spread to brain. In vitro assays indicate that 4T1Br4 cells have an enhanced ability to adhere to or migrate across a brain-derived endothelial monolayer and greater invasive response to brain-derived soluble factors compared to 4T1 cells. These properties are likely to contribute to the brain-selectivity of 4T1Br4 tumours. Expression profiling and gene set enrichment analyses demonstrate the clinical relevance of the 4T1Br4 model at the transcriptomic level. Pathway analyses implicate tumour-intrinsic immune regulation and vascular interactions in successful brain colonisation, revealing potential therapeutic targets. Evaluation of two histone deacetylase inhibitors, SB939 and 1179.4b, shows partial efficacy against 4T1Br4 metastasis to brain and other sites in vivo and potent radio-sensitising properties in vitro. The 4T1Br4 model provides a clinically relevant tool for mechanistic studies and to evaluate novel therapies against brain metastasis.SUMMARY STATEMENTWe introduce a new syngeneic mouse model of spontaneous breast cancer brain metastasis, demonstrate its phenotypic, functional and transcriptomic relevance to human TNBC brain metastasis and test novel therapies.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2898-2898
Author(s):  
Michael R McKeown ◽  
Christopher Fiore ◽  
Emily Lee ◽  
Matthew L Eaton ◽  
Christian C. Fritz

Abstract SY-1425, a potent and selective agonist of the retinoic acid receptor RARα, is being investigated in a Ph2 trial in a novel genomically-defined subset of non-APL AML and MDS patients (clinicaltrials.gov NCT02807558). RARa is a nuclear hormone receptor and transcription factor that regulates genes involved in cell differentiation and proliferation. We identified a super-enhancer (SE) at the RARA locus, the gene encoding RARa, in a subset of primary non-APL AML blasts. Preclinical models demonstrated a correlation between the presence of a RARA SE and sensitivity to SY-1425, providing the rationale for clinical investigation. Further research has investigated pharmacodynamics (PD) markers and combinations of drugs to support clinical development of SY-1425. In this study we identified DHRS3mRNA induction as a measure of RARα target engagement with SY-1425. We also demonstrated synergy in preclinical models with SY-1425 and hypomethylating agents. Since RARα is a transcription factor that regulates target genes when bound by a retinoid, we characterized the dynamic expression changes of a panel of RARA enhancer- high and - low non-APL AML cell lines (hereafter referred to as RARA-high and -low) in response to SY-1425 treatment. DHRS3 showed the largest expression increase following treatment in 3 RARA-high cell lines, with a range of 29 to 115 fold. In contrast, there was a much lower DHRS3 induction in 3 RARA-low cell lines (range of 1.6 to 6.1 fold). Induction was found to be both time- and dose-dependent with maximal induction at approximately 6 hours and half maximal induction near the EC50 for the anti-proliferative effect in RARA-high cell lines. DHRS3 encodes dehydrogenase/reductase (SDR family) member 3, a metabolic enzyme involved in maintaining cellular retinol homeostasis and had previously been shown to be induced by retinoids. Thus, DHRS3induction in tumor cells represents a potentially useful PD marker for clinical studies of SY-1425. To better understand the mechanism of induction of DHRS3 by SY-1425 we examined the chromosomal localization of RARα as well as the epigenomic state of the DHRS3 locus by ChIP-seq for RARα and H3K27 acetylation, the latter being an indicator of active enhancers and promoters. In the untreated state, OCI-AML3 (a typical RARA-high AML cell line) was found to have multiple RARα binding sites both within and distal to the DHRS3 gene but minimal H3K27 acetylation. Following treatment with SY-1425, the level of H3K27 acetylation at DHRS3 increased, resulting in the formation of a SE. Moreover, the SE encompassed the RARα binding sites, consistent with the model in which SY-1425 converts RARα into an activator of DHRS3expression. Similar results were seen for the CD38 locus in which SY-1425 treatment increased expression, H3K27 acetylation, and RARα binding. CD38 is a cell surface antigen and marker of myeloid maturation readily analyzed by FACS analysis, suggesting it could be an additional PD marker to be used in clinical studies. Indeed, it was found that SY-1425 induced CD38 cell surface expression at similar levels in RARA-high AML cell lines and the NB-4 APL cell line, but not in RARA-low cell lines. We also investigated combinations of SY-1425 with approved or investigational AML and MDS agents in in vitro and in vivo models to inform future clinical studies and to further explore potential PD markers unique to the combined action of the drugs. Several standard of care agents and drugs in current development were found to have synergistic interactions with SY-1425 in RARA-high but not RARA-low cell lines. In particular, azacitidine and decitabine each showed strong in vitro synergy with SY-1425. Evaluation of SY-1425 plus azacitidine in a RARA-high PDX model of non-APL AML demonstrated a better response compared to either agent alone. Additional genome-wide ChIP-seq and expression studies of RARA-high cells treated with various combinations are being investigated to identify optimal PD markers for these combinations. These studies support the use of DHRS3 mRNA induction in tumor cells as a PD marker in the recently initiated Ph2 study of SY-1425 in genomically-defined non-APL AML and MDS patients (clinicaltrials.gov NCT02807558) and further exploration as a PD marker for future combination studies. Disclosures McKeown: Syros Pharmaceuticals: Employment, Equity Ownership. Fiore:Syros Pharmaceuticals: Employment, Equity Ownership. Lee:Syros Pharmaceuticals: Employment, Equity Ownership. Eaton:Syros Pharmaceuticals: Employment, Equity Ownership. Fritz:Syros Pharmaceuticals: Employment, Equity Ownership.


2015 ◽  
Vol 21 (19) ◽  
pp. 4391-4397 ◽  
Author(s):  
Matthew J. Barth ◽  
Cory Mavis ◽  
Myron S. Czuczman ◽  
Francisco J. Hernandez-Ilizaliturri

2020 ◽  
Author(s):  
Zihu Guo ◽  
Yingxue Fu ◽  
Chao Huang ◽  
Chunli Zheng ◽  
Ziyin Wu ◽  
...  

AbstractRapid development of high-throughput technologies has permitted the identification of an increasing number of disease-associated genes (DAGs), which are important for understanding disease initiation and developing precision therapeutics. However, DAGs often contain large amounts of redundant or false positive information, leading to difficulties in quantifying and prioritizing potential relationships between these DAGs and human diseases. In this study, a network-oriented gene entropy approach (NOGEA) is proposed for accurately inferring master genes that contribute to specific diseases by quantitatively calculating their perturbation abilities on directed disease-specific gene networks. In addition, we confirmed that the master genes identified by NOGEA have a high reliability for predicting disease-specific initiation events and progression risk. Master genes may also be used to extract the underlying information of different diseases, thus revealing mechanisms of disease comorbidity. More importantly, approved therapeutic targets are topologically localized in a small neighborhood of master genes on the interactome network, which provides a new way for predicting new drug-disease associations. Through this method, 11 old drugs were newly identified and predicted to be effective for treating pancreatic cancer and then validated by in vitro experiments. Collectively, the NOGEA was useful for identifying master genes that control disease initiation and co-occurrence, thus providing a valuable strategy for drug efficacy screening and repositioning. NOGEA codes are publicly available at https://github.com/guozihuaa/NOGEA.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 74
Author(s):  
Mónica Villarreal-Salazar ◽  
Astrid Brull ◽  
Gisela Nogales-Gadea ◽  
Antoni L. Andreu ◽  
Miguel A. Martín ◽  
...  

McArdle disease is an autosomal recessive disorder of muscle glycogen metabolism caused by pathogenic mutations in the PYGM gene, which encodes the skeletal muscle-specific isoform of glycogen phosphorylase. Clinical symptoms are mainly characterized by transient acute “crises” of early fatigue, myalgia and contractures, which can be accompanied by rhabdomyolysis. Owing to the difficulty of performing mechanistic studies in patients that often rely on invasive techniques, preclinical models have been used for decades, thereby contributing to gain insight into the pathophysiology and pathobiology of human diseases. In the present work, we describe the existing in vitro and in vivo preclinical models for McArdle disease and review the insights these models have provided. In addition, despite presenting some differences with the typical patient’s phenotype, these models allow for a deep study of the different features of the disease while representing a necessary preclinical step to assess the efficacy and safety of possible treatments before they are tested in patients.


Sign in / Sign up

Export Citation Format

Share Document