scholarly journals N-Acetyl Cysteine Overdose Inducing Hepatic Steatosis and Systemic Inflammation in Both Propacetamol-Induced Hepatotoxic and Normal Mice

Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 442
Author(s):  
Gunn-Guang Liou ◽  
Cheng-Chi Hsieh ◽  
Yi-Ju Lee ◽  
Pin-Hung Li ◽  
Ming-Shiun Tsai ◽  
...  

Acetaminophen (APAP) overdose induces acute liver damage and even death. The standard therapeutic dose of N-acetyl cysteine (NAC) cannot be applied to every patient, especially those with high-dose APAP poisoning. There is insufficient evidence to prove that increasing NAC dose can treat patients who failed in standard treatment. This study explores the toxicity of NAC overdose in both APAP poisoning and normal mice. Two inbred mouse strains with different sensitivities to propacetamol-induced hepatotoxicity (PIH) were treated with different NAC doses. NAC therapy decreased PIH by reducing lipid oxidation, protein nitration and inflammation, and increasing glutathione (GSH) levels and antioxidative enzyme activities. However, the therapeutic effects of NAC on PIH were dose-dependent from 125 (N125) to 275 mg/kg (N275). Elevated doses of NAC (400 and 800 mg/kg, N400 and N800) caused additional deaths in both propacetamol-treated and normal mice. N800 treatments significantly decreased hepatic GSH levels and induced inflammatory cytokines and hepatic microvesicular steatosis in both propacetamol-treated and normal mice. Furthermore, both N275 and N400 treatments decreased serum triglyceride (TG) and induced hepatic TG, whereas N800 treatment significantly increased interleukin-6, hepatic TG, and total cholesterol levels. In conclusion, NAC overdose induces hepatic and systemic inflammations and interferes with fatty acid metabolism.

2006 ◽  
Vol 47 (8) ◽  
pp. 1780-1790 ◽  
Author(s):  
Henning Wittenburg ◽  
Malcolm A. Lyons ◽  
Renhua Li ◽  
Ulrike Kurtz ◽  
Xiaosong Wang ◽  
...  

Blood ◽  
2006 ◽  
Vol 109 (7) ◽  
pp. 2999-3006 ◽  
Author(s):  
Steven M. Kornblau ◽  
Deborah E. Banker ◽  
Derek Stirewalt ◽  
Danny Shen ◽  
Elizabeth Lemker ◽  
...  

Abstract Following exposure to cytotoxic agents, acute myeloid leukemia (AML) blasts elevate cellular cholesterol in a defensive adaptation that increases chemoresistance, but blockade of HMG-CoA reductase with statins restores chemosensitivity in vitro. This phase 1 study evaluated adding pravastatin (PV) (40-1680 mg/day, days 1-8) to idarubicin (Ida) ([12 mg/(M2 · day), days 4-6]) + high-dose cytarabine (Ara-C; HDAC) [1.5 g/(M2 · day) by CI, days 4-7] in 15 newly diagnosed and 22 salvage patients with unfavorable (n = 26) or intermediate (n = 10) prognosis cytogenetics. Compared with historical experience with Ida-HDAC, the duration of neutropenia and throbmbocytopenia and the toxicity profile were unaffected by the addition of PV. During PV loading (day 0-4) serum triglyceride and total and LDL cholesterol levels decreased in nearly all patients. Pharmacokinetic studies demonstrated higher and more sustained serum PV levels with PV doses above 1280 mg/day. CR/CRp was obtained in 11 of 15 new patients, including 8 of 10 with unfavorable cytogenetics, and 9 of 22 salvage patients. An MTD for PV + Ida-HDAC was not reached. Addition of PV to Ida-HDAC was safe, and the encouraging response rates support conducting further trials evaluating the effect of cholesterol modulation on response in AML.


2018 ◽  
Author(s):  
Guanglin Zhang ◽  
Hyae Ran Byun ◽  
Zhe Ying ◽  
Montgomery Blencowe ◽  
Yuqi Zhao ◽  
...  

AbstractHigh fructose intake is a major risk for metabolic syndrome; however, its effects seem to vary across individuals. To determine main factors involved in the inter-individual responses to fructose, we fed inbred mouse strains C57BL/6J (B6), DBA/2J (DBA) and FVB/NJ (FVB) with fructose. DBA mice showed the highest susceptibility to gain adiposity and glucose intolerance. Elevated insulin was found in DBA and FVB mice, and cholesterol levels were uniquely elevated in B6 mice. The transcriptional profiles of liver, hypothalamus, and adipose tissues showed strain- and tissue-specific pathways altered by fructose, such as fatty acid and cholesterol pathways for B6 and PPAR signaling for DBA in liver, and oxidative phosphorylation for B6 and protein processing for DBA in hypothalamus. Using network modeling, we predicted potential strain-specific key regulators of fructose response such as Fgf21 (DBA) and Lss (B6) in liver, and validated strain-biased responses as well as the regulatory actions of Fgf21 and Lss in primary hepatocytes. Our findings support that fructose perturbs individualized tissue networks and pathways and associates with distinct features of metabolic dysfunctions across genetically diverse mice. Our results elucidate the molecular pathways and gene regulatory mechanisms underlying inter-individual variability in response to high fructose diet.


Endocrinology ◽  
2012 ◽  
Vol 153 (6) ◽  
pp. 2599-2611 ◽  
Author(s):  
Justyna Krachulec ◽  
Melanie Vetter ◽  
Anja Schrade ◽  
Ann-Kathrin Löbs ◽  
Malgorzata Bielinska ◽  
...  

In response to gonadectomy certain inbred mouse strains develop sex steroidogenic adrenocortical neoplasms. One of the hallmarks of neoplastic transformation is expression of GATA4, a transcription factor normally present in gonadal but not adrenal steroidogenic cells of the adult mouse. To show that GATA4 directly modulates adrenocortical tumorigenesis and is not merely a marker of gonadal-like differentiation in the neoplasms, we studied mice with germline or conditional loss-of-function mutations in the Gata4 gene. Germline Gata4 haploinsufficiency was associated with attenuated tumor growth and reduced expression of sex steroidogenic genes in the adrenal glands of ovariectomized B6D2F1 and B6AF1 mice. At 12 months after ovariectomy, wild-type B6D2F1 mice had biochemical and histological evidence of adrenocortical estrogen production, whereas Gata4+/− B6D2F1 mice did not. Germline Gata4 haploinsufficiency exacerbated the secondary phenotype of postovariectomy obesity in B6D2F1 mice, presumably by limiting ectopic estrogen production in the adrenal glands. Amhr2-cre-mediated deletion of floxed Gata4 (Gata4F) in nascent adrenocortical neoplasms of ovariectomized B6.129 mice reduced tumor growth and the expression of gonadal-like markers in a Gata4F dose-dependent manner. We conclude that GATA4 is a key modifier of gonadectomy-induced adrenocortical neoplasia, postovariectomy obesity, and sex steroidogenic cell differentiation.


1997 ◽  
Vol 273 (2) ◽  
pp. R696-R702 ◽  
Author(s):  
L. I. Crawshaw ◽  
H. L. Wallace ◽  
J. C. Crabbe ◽  
C. Ramos ◽  
J. Duerr ◽  
...  

Two inbred mouse strains, C57BL/6J (B6) and DBA/2J (D2), were evaluated for effects of ethanol on thermoregulation. Continuous recording of core temperature (Tc) from undisturbed animals at an ambient temperature (Ta) of 27 degrees C indicated Tc was similar for both strains during active (approximately 38.0 degrees C) and inactive (approximately 36.7 degrees C) periods. Ethanol-injections of 1.5, 2.5, 3.5, and 4.5 g/kg in an environment where Ta rose and fell at 6-min intervals, reaching extremes of 14 and 42 degrees C, produced dose-dependent falls in Tc for both strains. The changes in Ta produced fluctuations in Tc under all conditions. The amplitude of these fluctuations in Tc was used as a measure of physiological disruption. Dose-dependent increases in disruption were found for both strains. At a constant 26 degrees C Ta, ethanol produced dose-related increases in tail temperature. Responses after ethanol administration were different for B6 and D2 mice. The results indicate regulated temperature is similar for B6 and D2 strains. Regulated temperature is decreased more by ethanol for B6 mice, whereas disruption of thermoregulation by ethanol is greater for D2 mice.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1981 ◽  
Author(s):  
Qiufen Mo ◽  
Aikun Fu ◽  
Lingli Deng ◽  
Minjie Zhao ◽  
Yang Li ◽  
...  

Glycerol monolaurate (GML) has potent antimicrobial and anti-inflammatory activities. The present study aimed to assess the dose-dependent antimicrobial-effects of GML on the gut microbiota, glucose and lipid metabolism and inflammatory response in C57BL/6 mice. Mice were fed on diets supplemented with GML at dose of 400, 800 and 1600 mg kg−1 for 4 months, respectively. Results showed that supplementation of GML, regardless of the dosages, induced modest body weight gain without affecting epididymal/brown fat pad, lipid profiles and glycemic markers. A high dose of GML (1600 mg kg−1) showed positive impacts on the anti-inflammatory TGF-β1 and IL-22. GML modulated the indigenous microbiota in a dose-dependent manner. It was found that 400 and 800 mg kg−1 GML improved the richness of Barnesiella, whereas a high dosage of GML (1600 mg kg−1) significantly increased the relative abundances of Clostridium XIVa, Oscillibacter and Parasutterella. The present work indicated that GML could upregulate the favorable microbial taxa without inducing systemic inflammation and dysfunction of glucose and lipid metabolism.


Genetics ◽  
2002 ◽  
Vol 162 (1) ◽  
pp. 297-306 ◽  
Author(s):  
Kara E Koehler ◽  
Jonathan P Cherry ◽  
Audrey Lynn ◽  
Patricia A Hunt ◽  
Terry J Hassold

AbstractGenetic background effects on the frequency of meiotic recombination have long been suspected in mice but never demonstrated in a systematic manner, especially in inbred strains. We used a recently described immunostaining technique to assess meiotic exchange patterns in male mice. We found that among four different inbred strains—CAST/Ei, A/J, C57BL/6, and SPRET/Ei—the mean number of meiotic exchanges per cell and, thus, the recombination rates in these genetic backgrounds were significantly different. These frequencies ranged from a low of 21.5 exchanges in CAST/Ei to a high of 24.9 in SPRET/Ei. We also found that, as expected, these crossover events were nonrandomly distributed and displayed positive interference. However, we found no evidence for significant differences in the patterns of crossover positioning between strains with different exchange frequencies. From our observations of >10,000 autosomal synaptonemal complexes, we conclude that achiasmate bivalents arise in the male mouse at a frequency of 0.1%. Thus, special mechanisms that segregate achiasmate chromosomes are unlikely to be an important component of mammalian male meiosis.


Sign in / Sign up

Export Citation Format

Share Document