scholarly journals Native Chilean Berries Preservation and In Vitro Studies of a Polyphenol Highly Antioxidant Extract from Maqui as a Potential Agent against Inflammatory Diseases

Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 843
Author(s):  
Tamara Ortiz ◽  
Federico Argüelles-Arias ◽  
Belén Begines ◽  
Josefa-María García-Montes ◽  
Alejandra Pereira ◽  
...  

The best conservation method for native Chilean berries has been investigated in combination with an implemented large-scale extract of maqui berry, rich in total polyphenols and anthocyanin to be tested in intestinal epithelial and immune cells. The methanolic extract was obtained from lyophilized and analyzed maqui berries using Folin–Ciocalteu to quantify the total polyphenol content, as well as 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC) to measure the antioxidant capacity. Determination of maqui’s anthocyanins profile was performed by ultra-high-performance liquid chromatography (UHPLC-MS/MS). Viability, cytotoxicity, and percent oxidation in epithelial colon cells (HT-29) and macrophages cells (RAW 264.7) were evaluated. In conclusion, preservation studies confirmed that the maqui properties and composition in fresh or frozen conditions are preserved and a more efficient and convenient extraction methodology was achieved. In vitro studies of epithelial cells have shown that this extract has a powerful antioxidant strength exhibiting a dose-dependent behavior. When lipopolysaccharide (LPS)-macrophages were activated, noncytotoxic effects were observed, and a relationship between oxidative stress and inflammation response was demonstrated. The maqui extract along with 5-aminosalicylic acid (5-ASA) have a synergistic effect. All of the compiled data pointed out to the use of this extract as a potential nutraceutical agent with physiological benefits for the treatment of inflammatory bowel disease (IBD).

Medicina ◽  
2019 ◽  
Vol 55 (7) ◽  
pp. 349 ◽  
Author(s):  
Mayra A. Mendez-Encinas ◽  
Elizabeth Carvajal-Millan ◽  
Agustín Rascón-Chu ◽  
Humberto Astiazarán-García ◽  
Dora E. Valencia-Rivera ◽  
...  

Background and objectives: Arabinoxylans (AX) can gel and exhibit antioxidant capacity. Previous studies have demonstrated the potential application of AX microspheres as colon-targeted drug carriers. However, the cytotoxicity of AX gels has not been investigated so far. Therefore, the aim of the present study was to prepare AX-based particles (AXM) by coaxial electrospraying method and to investigate their antioxidant potential and cytotoxicity on human colon cells. Materials and Methods: The gelation of AX was studied by monitoring the storage (G′) and loss (G′′) moduli. The morphology of AXM was evaluated using optical and scanning electron microscopy (SEM). The in vitro antioxidant activity of AX before and after gelation was measured using the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) methods. In addition, the effect of AX and AXM on the proliferation of human colon cells (CCD 841 CoN) was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results: The final G′ and G′′ values for AX gels were 293 and 0.31 Pa, respectively. AXM presented spherical shape and rough surface with a three-dimensional and porous network. The swelling ratio and mesh size of AXM were 35 g water/g AX and 27 nm, respectively. Gelation decreased the antioxidant activity of AX by 61–64 %. AX and AXM did not affect proliferation or show any toxic effect on the normal human colon cell line CCD 841 CoN. Conclusion: The results indicate that AXM could be promising biocompatible materials with antioxidant activity.


Author(s):  
Ali Mandegary ◽  

Purpose of the Study: Textured soy protein (TSP) and Ajil are two processed forms of soybean (Glycine max L.) which are widely consumed by Iranian for nutritional purpose. Recently, we have reported antioxidant and anticholinesterse effect of raw soybean (RS) which has been attributed to isoflavones such as genistein. In this work, we aimed to compare in vitro antioxidant and antichoinesterase effects of TSP, Ajil and RS to select the most effective one for learning capacity and spatial memory studies. Method: Genistein content was determined using high performance thin layer chromatography (HPTLC) while diphenylpicrylhydrazil (DPPH) radiacal scavenging and ferric reducing antioxidant power (FRAP) were used for antioxidant evaluation study and Ellman’s colorimetry method was used for anticholinesterase assay. TSP extract (TSPE) was administered to male rats (100, 200 and 400mg/kg, i.p for 7 days) before scopolamine (1mg/kg) injection. Learning capacity and spatial memory was evaluated by passive avoidance test (PAT) and Morris water maze (MWM) methods compared to physostigmine and piracetam. Results: The greatest antioxidant and anticholinesterase effect was observed for TSPE which significantly prolonged initially latency in PTA (p<0.05) and improved all indicators in MWM test at 200mg/kg. Conclusion: The memory improving effect of TSPE might be due to its antioxidant and anticholinesterase effect as well as neuroprotective effects of its isoflavones.


Foods ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 457 ◽  
Author(s):  
Biancamaria Senizza ◽  
Gabriele Rocchetti ◽  
Murat Ali Okur ◽  
Gokhan Zengin ◽  
Evren Yıldıztugay ◽  
...  

In this work, the phytochemical profile and the biological properties of Colchicum triphyllum (an unexplored Turkish cultivar belonging to Colchicaceae) have been comprehensively investigated for the first time. Herein, we focused on the evaluation of the in vitro antioxidant and enzyme inhibitory effects of flower, tuber, and leaf extracts, obtained using different extraction methods, namely maceration (both aqueous and methanolic), infusion, and Soxhlet. Besides, the complete phenolic and alkaloid untargeted metabolomic profiling of the different extracts was investigated. In this regard, ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) allowed us to putatively annotate 285 compounds when considering the different matrix extracts, including mainly alkaloids, flavonoids, lignans, phenolic acids, and tyrosol equivalents. The most abundant polyphenols were flavonoids (119 compounds), while colchicine, demecolcine, and lumicolchicine isomers were some of the most widespread alkaloids in each extract analyzed. In addition, our findings showed that C. triphyllum tuber extracts were a superior source of both total alkaloids and total polyphenols, being on average 2.89 and 10.41 mg/g, respectively. Multivariate statistics following metabolomics allowed for the detection of those compounds most affected by the different extraction methods. Overall, C. triphyllum leaf extracts showed a strong in vitro antioxidant capacity, in terms of cupric reducing antioxidant power (CUPRAC; on average 96.45 mg Trolox Equivalents (TE)/g) and ferric reducing antioxidant power (FRAP) reducing power (on average 66.86 mg TE/g). Interestingly, each C. triphyllum methanolic extract analyzed (i.e., from tuber, leaf, and flower) was active against the tyrosinase in terms of inhibition, recording the higher values for methanolic macerated leaves (i.e., 125.78 mg kojic acid equivalent (KAE)/g). On the other hand, moderate inhibitory activities were observed against AChE and α-amylase. Strong correlations (p < 0.01) were also observed between the phytochemical profiles and the biological activities determined. Therefore, our findings highlighted, for the first time, the potential of C. triphhyllum extracts in food and pharmaceutical applications.


Foods ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1451 ◽  
Author(s):  
Antonella Bosso ◽  
Claudio Cassino ◽  
Silvia Motta ◽  
Loretta Panero ◽  
Christos Tsolakis ◽  
...  

The polyphenolic composition and antioxidant activity of grape seeds, as byproducts of red winemaking, depend on various factors, such as grape cultivar, vintage effect, grape maturity and winemaking methods. In the present work, the influence of the maceration length on the polyphenolic and antioxidant characteristics of the seeds of four Italian red grape cultivars (‘Barbera’, ‘Grignolino’, ‘Nebbiolo’, and ‘Uvalino’), sampled from the fermentation tanks after short (two days) and medium-long (7–21 days) macerations, was studied with spectrophotometric methods, high-performance liquid chromatography (HPLC), and three different antioxidant assays (2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power (FRAP) and 2,2 diphenyl-1-picrylhydrazyl (DPPH)). The total polyphenolic content (gallic acid equivalent (GAE)) of the seeds sampled after short macerations ranged between 24.5 and 60.1 mg/g dry weight (DW), and it dropped to 20.0–37.5 mg/g DW after medium-long macerations. The polyphenolic profile of the shortly macerated seeds was related to the varietal characteristics, while, after longer macerations, the influence of the maceration length prevailed on the cultivar effect. The multiple in vitro antioxidant activity tests (ABTS, FRAP and DPPH), although based on different mechanisms capable of highlighting behavioral differences between the different polyphenolic compounds, were highly correlated with each other and with the polyphenolic parameters; the qualitative differences between the matrices in the polyphenolic profile were probably less important than the quantitative differences in the polyphenolic content. The relations with the polyphenolic content were linear, except for the Efficient Concentration (EC20) parameter, whose relation was better described by a hyperbolic equation.


2018 ◽  
Vol 8 (1) ◽  
pp. 1-8
Author(s):  
Sobia Tahir ◽  
Kousar Yasmeen ◽  
Urooj Haroon ◽  
Iftikhar Ahmed Tahiri ◽  
Muhammad Ali Versiani ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Gwan-Jin Ko ◽  
Soo Deok Han ◽  
Jeong-Ki Kim ◽  
Jia Zhu ◽  
Won Bae Han ◽  
...  

Abstract A novel transient electronics technology that is capable of completely dissolving or decomposing in certain conditions after a period of operation offers unprecedented opportunities for medical implants, environmental sensors, and other applications. Here, we describe a biodegradable, flexible silicon-based electronic system that detects NO species with a record-breaking sensitivity of 136 Rs (5 ppm, NO2) and 100-fold selectivity for NO species over other substances with a fast response (~30 s) and recovery (~60 s). The exceptional features primarily depend on not only materials, dimensions, and design layouts but also temperatures and electrical operations. Large-scale sensor arrays in a mechanically pliable configuration exhibit negligible deterioration in performance under various modes of applied loads, consistent with mechanics modeling. In vitro evaluations demonstrate the capability and stability of integrated NOx devices in severe wet environments for biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document