scholarly journals Garcinia cambogia Ameliorates Non-Alcoholic Fatty Liver Disease by Inhibiting Oxidative Stress-Mediated Steatosis and Apoptosis through NRF2-ARE Activation

Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1226
Author(s):  
Joo-Hui Han ◽  
Min-Ho Park ◽  
Chang-Seon Myung

Excessive free fatty acids (FFAs) causes reactive oxygen species (ROS) generation and non-alcoholic fatty liver disease (NAFLD) development. Garcinia cambogia (G. cambogia ) is used as an anti-obesity supplement, and its protective potential against NAFLD has been investigated. This study aims to present the therapeutic effects of G. cambogia on NAFLD and reveal underlying mechanisms. High-fat diet (HFD)-fed mice were administered G. cambogia for eight weeks, and steatosis, apoptosis, and biochemical parameters were examined in vivo. FFA-induced HepG2 cells were treated with G. cambogia, and lipid accumulation, apoptosis, ROS level, and signal alterations were examined. The results showed that G. cambogia inhibited HFD-induced steatosis and apoptosis and abrogated abnormalities in serum chemistry. G. cambogia increased in NRF2 nuclear expression and activated antioxidant responsive element (ARE), causing induction of antioxidant gene expression. NRF2 activation inhibited FFA-induced ROS production, which suppressed lipogenic transcription factors, C/EBPα and PPARγ. Moreover, the ability of G. cambogia to inhibit ROS production suppressed apoptosis by normalizing the Bcl-2/BAX ratio and PARP cleavage. Lastly, these therapeutic effects of G. cambogia were due to hydroxycitric acid (HCA). These findings provide new insight into the mechanism by which G. cambogia regulates NAFLD progression.

2019 ◽  
Vol 115 ◽  
pp. 108938 ◽  
Author(s):  
Shahsanam Gheibi ◽  
Hadi Esmaeili Gouvarchin Ghaleh ◽  
Bahman Mansori Motlagh ◽  
Anahita Fathi Azarbayjani ◽  
Leila zarei

Nutrients ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1057 ◽  
Author(s):  
Raghdaa Al Zarzour ◽  
Mohammed Alshawsh ◽  
Muhammad Asif ◽  
Majed Al-Mansoub ◽  
Zahurin Mohamed ◽  
...  

The growth of adipose tissues is considered angiogenesis-dependent during non-alcoholic fatty liver disease (NAFLD). We have recently reported that our standardized 50% methanolic extract (ME) of Phyllanthus niruri (50% ME of P. niruri) has alleviated NAFLD in Sprague–Dawley rats. This study aimed to assess the molecular mechanisms of action, and to further evaluate the antiangiogenic effect of this extract. NAFLD was induced by eight weeks of high-fat diet, and treatment was applied for four weeks. Antiangiogenic activity was assessed by aortic ring assay and by in vitro tests. Our findings demonstrated that the therapeutic effects of 50% ME among NAFLD rats, were associated with a significant increase in serum adiponectin, reduction in the serum levels of RBP4, vaspin, progranulin, TNF-α, IL-6, and significant downregulation of the hepatic gene expression of PPARγ, SLC10A2, and Collα1. Concomitantly, 50% ME of P. niruri has exhibited a potent antiangiogenic activity on ring assay, cell migration, vascular endothelial growth factor (VEGF), and tube formation, without any cytotoxic effect. Together, our findings revealed that the protective effects of P. niruri against NAFLD might be attributed to its antiangiogenic effect, as well as to the regulation of adipocytokines and reducing the expression of adipogenic genes.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Hanyan Luo ◽  
Hongwei Wu ◽  
Lixia Wang ◽  
Shuiming Xiao ◽  
Yaqi Lu ◽  
...  

AbstractCassiae Semen (CS), the seeds of Cassia obtusifolia L. and C. tora L, have a long medicinal history in China, with suggestions for it to relieve constipation and exert hepatoprotective effects. However, the underlying mechanisms are still unclear. In this study, mice with high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) were used to study the hepatoprotective effects of CS. The relationship between gut microbiota and hepatoprotective effect mechanisms mediated by CS extracts, the total aglycone extracts of CS, rubrofusarin-6-β-gentiobioside, and aurantio-obtusin were examined. Our data indicate that CS extracts and components confer a protective effect by ameliorating lipid accumulation, intestinal barrier damage, liver damage, and inflammation on HFD-induced liver injury. Meanwhile, fecal microbe transplantation exerted the pharmacological effect of CS on HFD-fed mice; however, the efficacy of CS was inhibited or eliminated by antibiotic-induced dysbiosis. In conclusion, the therapeutic effects of CS on NAFLD were closely related to the gut microbiota, suggesting a role for TCM in treating disease.


2020 ◽  
Vol 10 (4) ◽  
pp. 542-555
Author(s):  
Ramin Jalili ◽  
Mohammad Hossein Somi ◽  
Hossein Hosseinifard ◽  
Fatemeh Salehnia ◽  
Morteza Ghojazadeh ◽  
...  

Purpose : Non-alcoholic fatty liver disease (NAFLD) and steatohepatitis are two forms of fatty liver disease with benign and malignant nature, respectively. These two conditions can cause an increased risk of liver cirrhosis and hepatocellular carcinoma. Given the importance and high prevalence of NAFLD, it is necessary to investigate the results of different studies in related scope to provide a clarity guarantee of effectiveness. Therefore, this systematic review and metaanalysis aim to study the efficacy of various medications used in the treatment of NAFLD. Methods: A systematic search of medical databases identified 1963 articles. After exclusion of duplicated articles and those which did not meet our inclusion criteria, eta-analysis was performed on 84 articles. Serum levels of alanine aminotransferase (ALT), aspartate amino transferase (AST) were set as primary outcomes and body mass index (BMI), hepatic steatosis, and NAFLD activity score (NAS) were determined as secondary outcomes. Results: Based on the P-score of the therapeutic effects on the non-alcoholic steatohepatitis (NASH), we observed the highest efficacy for atorvastatin, tryptophan, orlistat, omega-3 and obeticholic acid for reduction of ALT, AST, BMI, steatosis and NAS respectively. Conclusion: This meta-analysis showed that atorvastatin. life-style modification, weight loss, and BMI reduction had a remarkable effect on NAFLD-patients by decreasing aminotransferases.


PLoS ONE ◽  
2017 ◽  
Vol 12 (8) ◽  
pp. e0183426 ◽  
Author(s):  
Zhenhua Ma ◽  
Yangmin Zhang ◽  
Qingchun Li ◽  
Meng Xu ◽  
Jigang Bai ◽  
...  

Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 28 ◽  
Author(s):  
Beatrice Foglia ◽  
Salvatore Sutti ◽  
Dario Pedicini ◽  
Stefania Cannito ◽  
Claudia Bocca ◽  
...  

Background: Hepatic myofibroblasts (MFs) can originate from hepatic stellate cells, portal fibroblasts, or bone marrow-derived mesenchymal stem cells and can migrate towards the site of injury by aligning with nascent and established fibrotic septa in response to several mediators. Oncostatin M (OSM) is known to orchestrate hypoxia-modulated hepatic processes involving the hypoxia-inducible factor 1 (HIF-1). Methods. In vivo and in vitro experiments were performed to analyze the expression of OSM and OSM-receptor (OSMR) in three murine models of non-alcoholic-fatty liver disease (NAFLD) and -steatohepatitis (NASH) and in human NASH patients as well as the action of OSM on phenotypic responses of human MFs. Results: Hepatic OSM and OSMR levels were overexpressed in three murine NASH models and in NASH patients. OSM stimulates migration in human MFs by involving early intracellular ROS generation and activation of Ras/Erk, JNK1/2, PI3K/Akt as well as STAT1/STAT3 pathways and HIF-1α. OSM-dependent migration relies on a biphasic mechanism requiring early intracellular generation of reactive oxygen species (ROS) and late HIF1-dependent expression and release of VEGF. Conclusion: OSM is overexpressed in experimental and human progressive NAFLD and can act as a profibrogenic factor by directly stimulating migration of hepatic MFs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cheng Chen ◽  
Xin Xin ◽  
Qian Liu ◽  
Hua-Jie Tian ◽  
Jing-Hua Peng ◽  
...  

Background: Non-alcoholic fatty liver disease (NAFLD), characterized by the excessive accumulation of hepatic triglycerides (TGs), has become a worldwide chronic liver disease. But efficient therapy keeps unsettled. Our previous works show that geniposide and chlorogenic acid combination (namely the GC combination), two active chemical components combined with a unique ratio (67.16:1), presents beneficial effects on high-fat diet-induced NAFLD rodent models. Notably, microarray highlighted the more than 5-fold down-regulated SCD-1 gene in the GC combination group. SCD-1 is an essential lipogenic protein for monounsaturated fatty acids’ biosynthesis and serves as a key regulatory enzyme in the last stage of hepatic de novo lipogenesis (DNL).Methods: NAFLD mice model was fed with 16 weeks high-fat diet (HFD). The pharmacological effects, primarily on hepatic TG, TC, FFA, and liver enzymes, et al. of the GC combination and two individual components were evaluated. Furthermore, hepatic SCD-1 expression was quantified with qRT-PCR, immunoblotting, and immunohistochemistry. Finally, the lentivirus-mediated over-expressed cell was carried out to confirm the GC combination’s influence on SCD-1.Results: The GC combination could significantly reduce hepatic TG, TC, and FFA in NAFLD rodents. Notably, the GC combination presented synergetic therapeutic effects, compared with two components, on normalizing murine hepatic lipid deposition and disordered liver enzymes (ALT and AST). Meanwhile, the robust SCD-1 induction induced by HFD and FFA in rodents and ALM-12 cells was profoundly blunted, and this potent suppression was recapitulated in lentivirus-mediated SCD-1 over-expressed cells.Conclusion: Taken together, our data prove that the GC combination shows a substantial and synergetic anti-lipogenesis effect in treating NAFLD, and these amelioration effects are highly associated with the potent suppressed hepatic SCD-1 and a blunted DNL process.


Sign in / Sign up

Export Citation Format

Share Document