scholarly journals Evaluating the In Vitro Potential of Natural Extracts to Protect Lipids from Oxidative Damage

Antioxidants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 231 ◽  
Author(s):  
Rafael Félix ◽  
Patrícia Valentão ◽  
Paula B. Andrade ◽  
Carina Félix ◽  
Sara C. Novais ◽  
...  

Lipid peroxidation is a chemical reaction known to have negative impacts on living organisms’ health and on consumer products’ quality and safety. Therefore, it has been the subject of extensive scientific research concerning the possibilities to reduce it, both in vivo and in nonliving organic matrices. It can be started by a variety of oxidants, by both ROS-dependent and -independent pathways, all of them reviewed in this document. Another feature of this reaction is the capacity of lipid peroxyl radicals to react with the non-oxidized lipids, propagating the reaction even in the absence of an external trigger. Due to these specificities of lipid peroxidation, regular antioxidant strategies—although being helpful in controlling oxidative triggers—are not tailored to tackle this challenge. Thus, more suited antioxidant compounds or technologies are required and sought after by researchers, either in the fields of medicine and physiology, or in product development and biotechnology. Despite the existence of several laboratory procedures associated with the study of lipid peroxidation, a methodology to perform bioprospecting of natural products to prevent lipid peroxidation (a Lipid Peroxidation Inhibitory Potential assay, LPIP) is not yet well established. In this review, a critical look into the possibility of testing the capacity of natural products to inhibit lipid peroxidation is presented. In vitro systems used to peroxidize a lipid sample are also reviewed on the basis of lipid substrate origin, and, for each of them, procedural insights, oxidation initiation strategies, and lipid peroxidation extent monitoring are discussed.

Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 348 ◽  
Author(s):  
Georgia-Eirini Deligiannidou ◽  
Rafail-Efraim Papadopoulos ◽  
Christos Kontogiorgis ◽  
Anastasia Detsi ◽  
Eugenia Bezirtzoglou ◽  
...  

The natural process of aging gradually causes changes in living organisms, leading to the deterioration of organs, tissues, and cells. In the case of osteoarthritis (OA), the degradation of cartilage is a result of both mechanical stress and biochemical factors. Natural products have already been evaluated for their potential role in the prevention and treatment of OA, providing a safe and effective adjunctive therapeutic approach. This review aimed to assess the therapeutic potential of natural products and their derivatives in osteoarthritis via a systematic search of literature after 2008, including in vitro, in vivo, ex vivo, and animal models, along with clinical trials and meta-analysis. Overall, 170 papers were obtained and screened. Here, we presented findings referring to the preventative and therapeutic potential of 17 natural products and 14 naturally occurring compounds, underlining, when available, the mechanisms implicated. The nature of OA calls to initially focus on the management of symptoms, and, in that context, several naturally occurring compounds have been utilized. Underlying a global need for more sustainable natural sources for treatment, the evidence supporting their chondroprotective potential is still building up. However, arriving at that kind of solution requires more clinical research, targeting the implications of long-term treatment, adverse effects, and epigenetic implications.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 479
Author(s):  
Panayiota Xylia ◽  
Antonios Chrysargyris ◽  
Zienab F. R. Ahmed ◽  
Nikolaos Tzortzakis

Nowadays, increase fruit losses are being reported due to the development of fungal postharvest diseases. In an attempt to reduce the use of synthetic fungicides, a turn towards natural products such as essential oils (EOs) and natural compounds has been made. The objective of this study was to investigate the effects of eucalyptus (Euc), rosemary (Ros) EO, their mixture (50:50 v/v) and their common main component (i.e., eucalyptol) on the quality parameters, fruit response and inhibition of blue rot (Penicillium expansum) in apple and pear fruits during their shelf life. The results of the present study revealed that fungal colony growth decreased in vitro with exposure at eucalyptus EO (Euc-300 μL/L), rosemary EO (Ros-300 μL/L) and their mixture (Euc + Ros 100 and 300 μL/L). The exposure at Ros-100 μL/L stimulated spore production, whilst Euc + Ros (100 and 300 μL/L) and eucalyptol (100 and 300 μL/L) decreased spore germination. Moreover, the in vivo applied treatments resulted in decreased lesion growth of P. expansum in apple and pear fruits. Respiration rate increased with the application of Euc + Ros at 300 μL/L and eucalyptus EO (Euc-100 μL/L and Euc-300 μL/L) for both assessed fruits. On the other hand, no significant differences were reported on apples and pears total soluble solids and acidity values. The application of Euc + Ros-300 μL/L in apples increased hydrogen peroxide (H2O2) levels, whilst Euc-100 and Euc-300 μL/L increased lipid peroxidation levels. Regarding pear fruits, exposure to Euc-100 μL/L and Ros-100 μL/L resulted in increased H2O2 whereas, Euc-100 μL/L, Ros- (100 and 300 μL/L) and eucalyptol (100 and 300 μL/L) also increased lipid peroxidation. The findings of this study indicate that the investigated natural products can be explored for the preservation of fresh apples and pears, as alternative natural fungicides with consideration of the fresh produce quality attributes.


2020 ◽  
Vol 26 (7) ◽  
pp. 772-779 ◽  
Author(s):  
Md. Ataur Rahman ◽  
Md Rezanur Rahman ◽  
Toyfiquz Zaman ◽  
Md. Sahab Uddin ◽  
Rokibul Islam ◽  
...  

Background: Naturally-occurring products derived from living organisms have been shown to modulate various pharmacological and biological activities. Natural products protect against various diseases, which could be used for therapeutic assistance. Autophagy, a lysosome-mediated self-digestion pathway, has been implicated in a range of pathophysiological conditions and has recently gained attention for its role in several neurodegenerative diseases. Methods: In this current review, we emphasized the recent progress made in our understanding of the molecular mechanism of autophagy in different cellular and mouse models using naturally-occurring autophagy modulators for the management of several neurodegenerative diseases. Results: Accumulating evidence has revealed that a wide variety of natural compounds such as alkaloids, polyphenols, terpenoids, xanthonoids, flavonoids, lignans, disaccharides, glycolipoproteins, and saponins are involved in the modulation of the autophagy signaling pathway. These natural products have been used to treat various neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Amyotrophic lateral sclerosis, spinocerebellar ataxia, neuroblastoma, and glioblastoma. Although a number of synthetic autophagy regulators have been recognized as encouraging neurodegenerative therapeutic candidates, natural autophagy- regulating compounds have been of further interest as potential disease therapeutics, as they cause insignificant side effects. Conclusion: Existing in vitro and in vivo data are promising and highlight that naturally-occurring autophagyregulating compounds play an important role in the prevention and treatment of neurodegenerative disorders.


2008 ◽  
Vol 54 (3) ◽  
pp. 191-195 ◽  
Author(s):  
Hang GUO ◽  
Ai EKUSA ◽  
Koji IWAI ◽  
Masami YONEKURA ◽  
Yoshihisa TAKAHATA ◽  
...  

2019 ◽  
Vol 26 (16) ◽  
pp. 2974-2986 ◽  
Author(s):  
Kwang-sun Kim

Vectors are living organisms that transmit infectious diseases from an infected animal to humans or another animal. Biological vectors such as mosquitoes, ticks, and sand flies carry pathogens that multiply within their bodies prior to delivery to a new host. The increased prevalence of Vector-Borne Diseases (VBDs) such as Aedes-borne dengue, Chikungunya (CHIKV), Zika (ZIKV), malaria, Tick-Borne Disease (TBD), and scrub typhus has a huge impact on the health of both humans and livestock worldwide. In particular, zoonotic diseases transmitted by mosquitoes and ticks place a considerable burden on public health. Vaccines, drugs, and vector control methods have been developed to prevent and treat VBDs and have prevented millions of deaths. However, development of such strategies is falling behind the rapid emergence of VBDs. Therefore, a comprehensive approach to fighting VBDs must be considered immediately. In this review, I focus on the challenges posed by emerging outbreaks of VBDs and discuss available drugs and vaccines designed to overcome this burden. Research into promising drugs needs to be upgraded and fast-tracked, and novel drugs or vaccines being tested in in vitro and in vivo models need to be moved into human clinical trials. Active preventive tactics, as well as new and upgraded diagnostics, surveillance, treatments, and vaccination strategies, need to be monitored constantly if we are to manage VBDs of medical importance.


2020 ◽  
Vol 27 ◽  
Author(s):  
Reyaz Hassan Mir ◽  
Abdul Jalil Shah ◽  
Roohi Mohi-ud-din ◽  
Faheem Hyder Potoo ◽  
Mohd. Akbar Dar ◽  
...  

: Alzheimer's disease (AD) is a chronic neurodegenerative brain disorder characterized by memory impairment, dementia, oxidative stress in elderly people. Currently, only a few drugs are available in the market with various adverse effects. So to develop new drugs with protective action against the disease, research is turning to the identification of plant products as a remedy. Natural compounds with anti-inflammatory activity could be good candidates for developing effective therapeutic strategies. Phytochemicals including Curcumin, Resveratrol, Quercetin, Huperzine-A, Rosmarinic acid, genistein, obovatol, and Oxyresvertarol were reported molecules for the treatment of AD. Several alkaloids such as galantamine, oridonin, glaucocalyxin B, tetrandrine, berberine, anatabine have been shown anti-inflammatory effects in AD models in vitro as well as in-vivo. In conclusion, natural products from plants represent interesting candidates for the treatment of AD. This review highlights the potential of specific compounds from natural products along with their synthetic derivatives to counteract AD in the CNS.


2020 ◽  
Vol 26 (35) ◽  
pp. 4362-4372
Author(s):  
John H. Miller ◽  
Viswanath Das

No effective therapeutics to treat neurodegenerative diseases exist, despite significant attempts to find drugs that can reduce or rescue the debilitating symptoms of tauopathies such as Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, amyotrophic lateral sclerosis, or Pick’s disease. A number of in vitro and in vivo models exist for studying neurodegenerative diseases, including cell models employing induced-pluripotent stem cells, cerebral organoids, and animal models of disease. Recent research has focused on microtubulestabilizing agents, either natural products or synthetic compounds that can prevent the axonal destruction caused by tau protein pathologies. Although promising results have come from animal model studies using brainpenetrant natural product microtubule-stabilizing agents, such as paclitaxel analogs that can access the brain, epothilones B and D, and other synthetic compounds such as davunetide or the triazolopyrimidines, early clinical trials in humans have been disappointing. This review aims to summarize the research that has been carried out in this area and discuss the potential for the future development of an effective microtubule stabilizing drug to treat neurodegenerative disease.


2020 ◽  
Vol 26 ◽  
Author(s):  
Shaik Ibrahim Khalivulla ◽  
Arifullah Mohammed ◽  
Kokkanti Mallikarjuna

Background: Diabetes is a chronic disease affecting a large population worldwide and stands as one of the major global health challenges to be tackled. According to World Health Organization, about 400 million are having diabetes worldwide and it is the seventh leading cause of deaths in 2016. Plant based natural products had been in use from ancient time as ethnomedicine for the treatment of several diseases including diabetes. As a result of that, there are several reports on plant based natural products displaying antidiabetic activity. In the current review, such antidiabetic potential compounds reported from all plant sources along with their chemical structures are collected, presented and discussed. This kind of reports are essential to pool the available information to one source followed by statistical analysis and screening to check the efficacy of all known compounds in a comparative sense. This kind of analysis can give rise to few numbers of potential compounds from hundreds, whom can further be screened through in vitro and in vivo studies, and human trails leading to the drug development. Methods: Phytochemicals along with their potential antidiabetic property were classified according to their basic chemical skeleton. The chemical structures of all the compounds with antidiabetic activities were elucidated in the present review. In addition to this, the distribution and their other remarkable pharmacological activities of each species is also included. Results: The scrutiny of literature led to identification of 44 plants with antidiabetic compounds (70) and other pharmacological activities. For the sake of information, the distribution of each species in the world is given. Many plant derivatives may exert antidiabetic properties by improving or mimicking the insulin production or action. Different classes of compounds including sulfur compounds (1-4), alkaloids (5-11), phenolic compounds (12-17), tannins (18-23), phenylpropanoids (24-27), xanthanoids (28-31), amino acid (32), stilbenoid (33), benzofuran (34), coumarin (35), flavonoids (36-49) and terpenoids (50-70) were found to be active potential compounds for antidiabetic activity. Of the 70 listed compounds, majorly 17 compounds are from triterpenoids, 13 flavonoids and 7 are from alkaloids. Among all the 44 plant species, maximum number (7) of compounds are reported from Lagerstroemia speciosa followed by Momordica charantia (6) and S. oblonga with 5 compounds. Conclusion: This is the first paper to summarize the established chemical structures of phytochemicals that have been successfully screened for antidiabetic potential and their mechanisms of inhibition. The reported compounds could be considered as potential lead molecules for the treatment of type-2 diabetes. Further, molecular and clinical trials are required to select and establish the therapeutic drug candidates.


2018 ◽  
Vol 18 (4) ◽  
pp. 365-371 ◽  
Author(s):  
Denis V. Mishchenko ◽  
Margarita E. Neganova ◽  
Elena N. Klimanova ◽  
Tatyana E. Sashenkova ◽  
Sergey G. Klochkov ◽  
...  

Background: Anti-tumor effect of hydroxamic acid derivatives is largely connected with its properties as efficient inhibitors of histone deacetylases, and other metalloenzymes involved in carcinogenesis. Objective: The work was aimed to (i) determine the anti-tumor and chemosensitizing activity of the novel racemic spirocyclic hydroxamic acids using experimental drug sensitive leukemia P388 of mice, and (ii) determine the structure-activity relationships as metal chelating and HDAC inhibitory agents. Method: Outbreed male rat of 200-220 g weights were used in biochemical experiments. In vivo experiments were performed using the BDF1 hybrid male mice of 22-24 g weight. Lipid peroxidation, Fe (II) -chelating activity, HDAC fluorescent activity, anti-tumor and anti-metastatic activity, acute toxicity techniques were used in this study. Results: Chemosensitizing properties of water soluble cyclic hydroxamic acids (CHA) are evaluated using in vitro activities and in vivo methods and found significant results. These compounds possess iron (II) chelating properties, and slightly inhibit lipid peroxidation. CHA prepared from triacetonamine (1a-e) are more effective Fe (II) ions cheaters, as compared to CHA prepared from 1- methylpiperidone (2a-e). The histone deacetylase (HDAC) inhibitory activity, lipophilicity and acute toxicity were influenced by the length amino acids (size) (Glycine < Alanine < Valine < Leucine < Phenylalanine). All compounds bearing spiro-N-methylpiperidine ring (2a-e) are non-toxic up to 1250 mg/kg dose, while compounds bearing spiro-tetramethylpiperidine ring (1a-e) exhibit moderate toxicity which increases with increasing lipophility, but not excite at 400 mg/kg. Conclusion: It was shown that the use of combination of non-toxic doses of cisplatin (cPt) or cyclophosphamide with CHA in most cases result in the appearance of a considerable anti-tumor effect of cytostatics. The highest chemosensitizing activity with respect to leukemia Р388 is demonstrated by the CHA derivatives of Valine 1c or 2c.


Sign in / Sign up

Export Citation Format

Share Document