scholarly journals Unraveling Natural Products’ Role in Osteoarthritis Management—An Overview

Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 348 ◽  
Author(s):  
Georgia-Eirini Deligiannidou ◽  
Rafail-Efraim Papadopoulos ◽  
Christos Kontogiorgis ◽  
Anastasia Detsi ◽  
Eugenia Bezirtzoglou ◽  
...  

The natural process of aging gradually causes changes in living organisms, leading to the deterioration of organs, tissues, and cells. In the case of osteoarthritis (OA), the degradation of cartilage is a result of both mechanical stress and biochemical factors. Natural products have already been evaluated for their potential role in the prevention and treatment of OA, providing a safe and effective adjunctive therapeutic approach. This review aimed to assess the therapeutic potential of natural products and their derivatives in osteoarthritis via a systematic search of literature after 2008, including in vitro, in vivo, ex vivo, and animal models, along with clinical trials and meta-analysis. Overall, 170 papers were obtained and screened. Here, we presented findings referring to the preventative and therapeutic potential of 17 natural products and 14 naturally occurring compounds, underlining, when available, the mechanisms implicated. The nature of OA calls to initially focus on the management of symptoms, and, in that context, several naturally occurring compounds have been utilized. Underlying a global need for more sustainable natural sources for treatment, the evidence supporting their chondroprotective potential is still building up. However, arriving at that kind of solution requires more clinical research, targeting the implications of long-term treatment, adverse effects, and epigenetic implications.

2020 ◽  
Vol 26 (7) ◽  
pp. 772-779 ◽  
Author(s):  
Md. Ataur Rahman ◽  
Md Rezanur Rahman ◽  
Toyfiquz Zaman ◽  
Md. Sahab Uddin ◽  
Rokibul Islam ◽  
...  

Background: Naturally-occurring products derived from living organisms have been shown to modulate various pharmacological and biological activities. Natural products protect against various diseases, which could be used for therapeutic assistance. Autophagy, a lysosome-mediated self-digestion pathway, has been implicated in a range of pathophysiological conditions and has recently gained attention for its role in several neurodegenerative diseases. Methods: In this current review, we emphasized the recent progress made in our understanding of the molecular mechanism of autophagy in different cellular and mouse models using naturally-occurring autophagy modulators for the management of several neurodegenerative diseases. Results: Accumulating evidence has revealed that a wide variety of natural compounds such as alkaloids, polyphenols, terpenoids, xanthonoids, flavonoids, lignans, disaccharides, glycolipoproteins, and saponins are involved in the modulation of the autophagy signaling pathway. These natural products have been used to treat various neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Amyotrophic lateral sclerosis, spinocerebellar ataxia, neuroblastoma, and glioblastoma. Although a number of synthetic autophagy regulators have been recognized as encouraging neurodegenerative therapeutic candidates, natural autophagy- regulating compounds have been of further interest as potential disease therapeutics, as they cause insignificant side effects. Conclusion: Existing in vitro and in vivo data are promising and highlight that naturally-occurring autophagyregulating compounds play an important role in the prevention and treatment of neurodegenerative disorders.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 327
Author(s):  
Mirjam Schuchardt ◽  
Jaqueline Herrmann ◽  
Cornelia Henkel ◽  
Milen Babic ◽  
Markus van der Giet ◽  
...  

Medial vascular calcification (mVC) is closely related to cardiovascular disease, especially in patients suffering from chronic kidney disease (CKD). Even after successful kidney transplantation, cardiovascular mortality remains increased. There is evidence that immunosuppressive drugs might influence pathophysiological mechanisms in the vessel wall. Previously, we have shown in vitro that mVC is induced in vascular smooth muscle cells (VSMCs) upon treatment with azathioprine (AZA). This effect was confirmed in the current study in an in vivo rat model treated with AZA for 24 weeks. The calcium content increased in the aortic tissue upon AZA treatment. The pathophysiologic mechanisms involve AZA catabolism to 6-thiouracil via xanthine oxidase (XO) with subsequent induction of oxidative stress. Proinflammatory cytokines, such as interleukin (IL)-1ß and IL-6, increase upon AZA treatment, both systemically and in the aortic tissue. Further, VSMCs show an increased expression of core-binding factor α-1, alkaline phosphatase and osteopontin. As the AZA effect could be decreased in NLRP3−/− aortic rings in an ex vivo experiment, the signaling pathway might be, at least in part, dependent on the NLRP3 inflammasome. Although human studies are necessary to confirm the harmful effects of AZA on vascular stiffening, these results provide further evidence of induction of VSMC calcification under AZA treatment and its effects on vessel structure.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3005
Author(s):  
Kanchan Bhardwaj ◽  
Ana Sanches Silva ◽  
Maria Atanassova ◽  
Rohit Sharma ◽  
Eugenie Nepovimova ◽  
...  

Conifers have long been recognized for their therapeutic potential in different disorders. Alkaloids, terpenes and polyphenols are the most abundant naturally occurring phytochemicals in these plants. Here, we provide an overview of the phytochemistry and related commercial products obtained from conifers. The pharmacological actions of different phytochemicals present in conifers against bacterial and fungal infections, cancer, diabetes and cardiovascular diseases are also reviewed. Data obtained from experimental and clinical studies performed to date clearly underline that such compounds exert promising antioxidant effects, being able to inhibit cell damage, cancer growth, inflammation and the onset of neurodegenerative diseases. Therefore, an attempt has been made with the intent to highlight the importance of conifer-derived extracts for pharmacological purposes, with the support of relevant in vitro and in vivo experimental data. In short, this review comprehends the information published to date related to conifers’ phytochemicals and illustrates their potential role as drugs.


2015 ◽  
Vol 32 (8) ◽  
pp. 1170-1182 ◽  
Author(s):  
A. AlQathama ◽  
J. M. Prieto

Natural products continue to provide lead cytotoxic compounds for cancer treatment but less attention has been given to antimigratory compounds. We here systematically and critically survey more than 30 natural products with direct in vitro and in vivo pharmacological effects on migration and/or metastasis of melanoma cells and chart the mechanisms of action for this underexploited property.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Claudia Pașca ◽  
Liviu Alexandru Mărghitaș ◽  
Daniel Severus Dezmirean ◽  
Ioana Adriana Matei ◽  
Victorița Bonta ◽  
...  

AbstractIntroductionBovine mastitis is an inflammatory disease of the udder that causes important economic losses in the animal breeding and dairy product industries. Nowadays, the conventional livestock antibiotic treatments are slowly being replaced by alternative treatments. In this context, the main aim of this study was to evaluate the efficacy of natural products in alternative treatment of bovine mastitis.Material and MethodsTwo natural formulations with previously suggested in vitro antimicrobial effect were tested in vivo on mastitic cows. Animals with a positive diagnosis for mastitis (n = 20) were divided into three treatment groups: two groups (n = 8) were administered formulations of propolis, alcoholic extracts of Brewers Gold and Perle hops, plum lichen, common mallow, marigold, absinthe wormwood, black poplar buds, lemon balm, and essential oils of oregano, lavender, and rosemary designated R4 and R7 (differing only in the latter being more concentrated) and one group (n = 4) a conventional antibiotic mixture. In vivo efficacy of treatments was evaluated by somatic cell and standard plate counts, the treatment being considered efficacious when both parameters were under the maximum limit.ResultsR7 was effective in the most cases, being therapeutically bactericidal in six out of eight cows, while R4 gave good results in three out of eight cows, and conventional antibiotics cured one out of four.ConclusionThese results suggest the possible therapeutic potential of these natural products in bovine mastitis.


1986 ◽  
Vol 9 (5) ◽  
pp. 301-304 ◽  
Author(s):  
S. Stefoni ◽  
A. Nanni Costa ◽  
G. Liviano D'Arcangelo ◽  
M. Biavati ◽  
S. lannelli ◽  
...  

Biocompatibility of charcoal hemoperfusion was studied in a group of 15 uremic patients, evaluating the effects of long-term treatment on some structural and functional parameters of circulating lymphocytes: in vivo distribution of T-cell subsets; surface T3, T4 and T8 antigen expression, in vivo and in vitro DNA synthesis. A comparative analysis was performed with patients on conventional dialysis using cuprophan membranes.


1986 ◽  
Vol 70 (4) ◽  
pp. 365-369 ◽  
Author(s):  
Michael Öhman ◽  
Stefan L. Marklund

1. Disulfiram has long been used in the treatment of chronic alcoholism. It is in vivo partially reduced to diethyldithiocarbamate, which is an efficient inhibitor of Cu, Zn-containing superoxide dismutase both in vitro and in vivo. The recently described extracellular superoxide dismutase is even more sensitive to diethyldithiocarbamate than Cu, Zn-superoxide dismutase. 2. To test for the possibility that long term treatment with disulfiram leads to inhibition of the superoxide dismutases, plasma extracellular superoxide dismutase and erythrocyte Cu, Zn-superoxide dismutase were determined in 12 disulfiram-treated alcoholics, and compared with 11 non-treated alcoholics and 19 healthy controls. 3. Plasma extracellular superoxide dismutase was moderately reduced (about 20%) in the disulfiram-treated alcoholics as compared with the non-treated alcoholics and the healthy controls. No effect of disulfiram treatment on erythrocyte Cu, Zn-superoxide dismutase activity was demonstrated.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Rajib Hossain ◽  
Cristina Quispe ◽  
Jesús Herrera-Bravo ◽  
Md. Shahazul Islam ◽  
Chandan Sarkar ◽  
...  

Lasia spinosa (L.) is used ethnobotanically for the treatment of various diseases, including rheumatoid arthritis, inflammation of the lungs, bleeding cough, hemorrhoids, intestinal diseases, stomach pain, and uterine cancer. This review is aimed at summarizing phytochemistry and pharmacological data with their molecular mechanisms of action. A search was performed in databases such as PubMed, Science Direct, and Google Scholar using the keywords: “Lasia spinosa,” then combined with “ethnopharmacological use,” “phytochemistry,” and “pharmacological activity.” This updated review included studies with in vitro, ex vivo, and in vivo experiments with compounds of known concentration and highlighted pharmacological mechanisms. The research results showed that L. spinosa contains many important nutritional and phytochemical components such as alkanes, aldehydes, alkaloids, carotenoids, flavonoids, fatty acids, ketones, lignans, phenolics, terpenoids, steroids, and volatile oil with excellent bioactivity. The importance of this review lies in the fact that scientific pharmacological evidence supports the fact that the plant has antioxidant, anti-inflammatory, antimicrobial, cytotoxic, antidiarrheal, antihelminthic, antidiabetic, antihyperlipidemic, and antinociceptive effects, while protecting the gastrointestinal system and reproductive. Regarding future toxicological and safety data, more research is needed, including studies on human subjects. In light of these data, L. spinosa can be considered a medicinal plant with effective bioactives for the adjuvant treatment of various diseases in humans.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2234
Author(s):  
Anbharasi Lakshmanan ◽  
Roman A. Akasov ◽  
Natalya V. Sholina ◽  
Polina A. Demina ◽  
Alla N. Generalova ◽  
...  

Formulation of promising anticancer herbal drug curcumin as a nanoscale-sized curcumin (nanocurcumin) improved its delivery to cells and organisms both in vitro and in vivo. We report on coupling nanocurcumin with upconversion nanoparticles (UCNPs) using Poly (lactic-co-glycolic Acid) (PLGA) to endow visualisation in the near-infrared transparency window. Nanocurcumin was prepared by solvent-antisolvent method. NaYF4:Yb,Er (UCNP1) and NaYF4:Yb,Tm (UCNP2) nanoparticles were synthesised by reverse microemulsion method and then functionalized it with PLGA to form UCNP-PLGA nanocarrier followed up by loading with the solvent-antisolvent process synthesized herbal nanocurcumin. The UCNP samples were extensively characterised with XRD, Raman, FTIR, DSC, TGA, UV-VIS-NIR spectrophotometer, Upconversion spectrofluorometer, HRSEM, EDAX and Zeta Potential analyses. UCNP1-PLGA-nanocurcumin exhibited emission at 520, 540, 660 nm and UCNP2-PLGA-nanocurmin showed emission at 480 and 800 nm spectral bands. UCNP-PLGA-nanocurcumin incubated with rat glioblastoma cells demonstrated moderate cytotoxicity, 60–80% cell viability at 0.12–0.02 mg/mL marginally suitable for therapeutic applications. The cytotoxicity of UCNPs evaluated in tumour spheroids models confirmed UCNP-PLGA-nanocurcumin therapeutic potential. As-synthesised curcumin-loaded nanocomplexes were administered in tumour-bearing laboratory animals (Lewis lung cancer model) and showed adequate contrast to enable in vivo and ex vivo study of UCNP-PLGA-nanocurcumin bio distribution in organs, with dominant distribution in the liver and lungs. Our studies demonstrate promise of nanocurcumin-loaded upconversion nanoparticles for theranostics applications.


Author(s):  
Sameh A. Abdelnour ◽  
Long Xie ◽  
Abdallah A. Hassanin ◽  
Erwei Zuo ◽  
Yangqing Lu

Clustered regularly interspaced short palindromic repeats (CRISPR) is a promising innovative technology for genomic editing that offers scientists the chance to edit DNA structures and change gene function. It has several possible uses consisting of editing inherited deficiencies, treating, and reducing the spread of disorders. Recently, reports have demonstrated the creation of synthetic RNA molecules and supplying them alongside Cas9 into genome of eukaryotes, since distinct specific regions of the genome can be manipulated and targeted. The therapeutic potential of CRISPR/Cas9 technology is great, especially in gene therapy, in which a patient-specific mutation is genetically edited, or in the treating of human disorders that are untreatable with traditional treatments. This review focused on numerous, in vivo, in vitro, and ex vivo uses of the CRISPR/Cas9 technology in human inherited diseases, discovering the capability of this versatile in medicine and examining some of the main limitations for its upcoming use in patients. In addition to introducing a brief impression of the biology of the CRISPR/Cas9 scheme and its mechanisms, we presented the utmost recent progress in the uses of CRISPR/Cas9 technology in editing and treating of human genetic diseases.


Sign in / Sign up

Export Citation Format

Share Document