scholarly journals Numerical Study on Hysteretic Behaviour of Horizontal-Connection and Energy-Dissipation Structures Developed for Prefabricated Shear Walls

2020 ◽  
Vol 10 (4) ◽  
pp. 1240 ◽  
Author(s):  
Limeng Zhu ◽  
Lingmao Kong ◽  
Chunwei Zhang

This study proposed a developed horizontal-connection and energy-dissipation structure (HES), which could be employed for horizontal connection of prefabricated shear wall structural system. The HES consists of an external replaceable energy dissipation (ED) zone mainly for energy dissipation and an internal stiffness lifting (SL) zone for enhancing the load-bearing capacity. By the predicted displacement threshold control device, the ED zone made in bolted low-yielding steel plates could firstly dissipate the energy and can be replaced after damage, the SL zone could delay the load-bearing and the load-displacement curves of the HES would exhibit “double-step” characteristics. Detailed finite element models are established and validated in software ABAQUS. parametric analysis including aspect ratio, the shape of the steel plate in the ED zone and the displacement threshold in the SL zone, is conducted. It is found that the HES depicts high energy dissipation ability and its bearing capacity could be obtained again after the yielding of the ED zone. The optimized X-shaped steel plate in the ED zone exhibit better performance. The “double-step” design of the HES is a potential way of improving the seismic and anti-collapsing performance of prefabricated shear wall structures against large and super-large earthquakes.

2011 ◽  
Vol 243-249 ◽  
pp. 1450-1455 ◽  
Author(s):  
Wan Lin Cao ◽  
Wen Jiang Zhang ◽  
Jian Wei Zhang ◽  
Hong Ying Dong

In view of the proposal of embedded steel plate concrete shear wall with concrete filled steel tube columns which contains a new kind shear connector of tie-bars through the circular holes linking concrete layers on both sides of the plate. In order to prove the seismic performance of walls with circular holes on the plate, three steel plate shear wall specimens, including the plate without holes bolted with columns, welded with columns, and the perforated plate welded with columns, were tested under cyclic loading. According to the results, the load-bearing capacity, ductility, energy dissipation, hysteretic behavior and failure phenomena were analyzed. It is showed that the load-bearing capacity of the three specimens were quite close. However, the wall with perforated steel plate has better ductility, energy dissipation and hysteretic behavior. So, it is an effective way to improve the seismic performance of walls by means of embedded perforated steel plate instead of ordinary ones.


2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Min Gan ◽  
Yu Yu ◽  
Liren Li ◽  
Xisheng Lu

Four test pieces with different steel plate center-to-center distances and reinforcement ratios are subjected to low-cycle repeat quasistatic loading to optimize properties as failure mode, hysteretic curve, skeleton curve, energy dissipation parameters, strength parameters, and seismic performance of high-strength concrete low-rise shear walls. The embedded steel plates are shown to effectively restrict wall crack propagation, enhance the overall steel ratio, and improve the failure mode of the wall while reducing the degree of brittle failure. Under the same conditions, increasing the spacing between the steel plates in the steel plate concrete shear wall can effectively preserve the horizontal bearing capacity of the shear wall under an ultimate load. The embedded steel plates perform better than concealed bracing in delaying stiffness degeneration in the low-rise shear walls, thus safeguarding their long-term bearing capacity. The results presented here may provide a workable basis for shear wall design optimization.


2021 ◽  
pp. 136943322110542
Author(s):  
Mahdi Usefvand ◽  
Ahmad Maleki ◽  
Babak Alinejad

Coupled steel plate shear wall (C-SPSW) is one of the resisting systems with high ductility and energy absorption capacity. Energy dissipation in the C-SPSW system is accomplished by the bending and shear behavior of the link beams and SPSW. Energy dissipation and floor displacement control occur through link beams at low seismic levels, easily replaced after an earthquake. In this study, an innovative coupled steel plate shear wall with a yielding FUSE is presented. The system uses a high-ductility FUSE pin element instead of a link beam, which has good replaceability after the earthquake. In this study, four models of coupled steel plate shear walls were investigated with I-shaped link beam, I-shaped link beam with reduced beam section (RBS), box-link beam with RBS, and FUSE pin element under cyclic loading. The finite element method was used through ABAQUS software to develop the C-SPSW models. Two test specimens of coupled steel plate shear walls were validated to verify the finite element method results. Comparative results of the hysteresis curves obtained from the finite element analysis with the experimental curves indicated that the finite element model offered a good prediction of the hysteresis behavior of C-SPSW. It is demonstrated in this study that the FUSE pin can improve and increase the strength and energy dissipation of a C-SPSW system by 19% and 20%, respectively.


2015 ◽  
Vol 19 (4) ◽  
pp. 99-110 ◽  
Author(s):  
Piotr Szewczyk ◽  
Maciej Szumigała

Abstract This paper presents the numerical modelling of strengthening a steel-concrete composite beam. The main assumption is that the strengthening is not the effect of the state of a failure of a structure, but it resulted from the need to increase the load-bearing capacity and stiffness of the structure (for example: due to a change in the use of the object). The expected solution is strengthening without the necessity to completely unload the structures (to reduce the scope of works, the cost of modernization and to shorten the time). The problem is presented on the example of a composite beam which was strengthened through welding a steel plate to the lower flange of the steel beam. The paper describes how energy parameters are used to evaluate the efficiency of structures’ strengthening and proposes an appropriate solution.


The focus of this analysis is the review of steel plate strengthened RC beams using Single row and Stagger row bolt arrangements and to compare the bonding behaviour of different bolts arrangement under flexure. Also, to investigate the behaviour, load bearing capacity and the deflection for control and steel plate bonded beams. This research is constrained by FEM analysis utilizing ANSYS to the actions of standard RC Beam and RC beam steel plate associated.


2021 ◽  
Vol 11 (4) ◽  
pp. 292-310
Author(s):  
Tadele Ergete Tadesse ◽  
Temesgen Wondimu Aure

Steel-Concrete composite shear wall has become popular recently as it compensates for the disadvantages of concrete and steel plate shear walls and combine the advantage of both. However, there is no detail study that identifies the most critical parameters. This study aims at investigation of steel plate-concrete composite shear wall behavior under cyclic loading with variables such as concrete strength, grade of steel plate, total number of tie constraints and thickness of steel plate. ABAQUS/Standard is used for numerical modeling in this study. As the concrete strength decreases from 86.1Mpa to 45Mpa, the load capacity declined by 11.76% and higher stiffness was recorded in specimen with higher grade of concrete. The ductility factor is inversely proportional to grade of concrete from 86.1Mpa to 60Mpa which increases from 4.26 to 4.68 and the ductility factor of specimen with 45Mpa strength is recorded as 3.81. The energy dissipation capacity is directly proportional to the grade of concrete used. Using high grade steel plate increases the lateral load capacity significantly and exhibited more ductile behavior. Specimen with S355 steel grade exhibited 14.01% increment of the average load capacity while the specimen with S245 steel grade has shown reduction by 9.21%. Similarly, the ductility factor and energy dissipation capacity of specimen with variable grade of steel are directly proportional. Reduction of tie constraints has no significant effect on the behavior in this study due to high confinement effect of concrete by surrounding steel plate. Specimens with thicker steel plate exhibited good energy dissipation capacity.


Sign in / Sign up

Export Citation Format

Share Document