scholarly journals Video Quality of Experience Metric for Dynamic Adaptive Streaming Services Using DASH Standard and Deep Spatial-Temporal Representation of Video

2020 ◽  
Vol 10 (5) ◽  
pp. 1793
Author(s):  
Lina Du ◽  
Li Zhuo ◽  
Jiafeng Li ◽  
Jing Zhang ◽  
Xiaoguang Li ◽  
...  

DASH (Dynamic Adaptive Streaming over HTTP (HyperText Transfer Protocol)) as a universal unified multimedia streaming standard selects the appropriate video bitrate to improve the user’s Quality of Experience (QoE) according to network conditions, client status, etc. Considering that the quantitative expression of the user’s QoE is also a difficult point in itself, this paper researched the distortion caused due to video compression, network transmission and other aspects, and then proposes a video QoE metric for dynamic adaptive streaming services. Three-Dimensional Convolutional Neural Networks (3D CNN) and Long Short-Term Memory (LSTM) are used together to extract the deep spatial-temporal features to represent the content characteristics of the video. While accounting for the fluctuation in the quality of a video caused by bitrate switching on the QoE, other factors such as video content characteristics, video quality and video fluency, are combined to form the input feature vector. The ridge regression method is adopted to establish a QoE metric that enables to dynamically describe the relationship between the input feature vector and the value of the Mean Opinion Score (MOS). The experimental results on different datasets demonstrate that the prediction accuracy of the proposed method can achieve superior performance over the state-of-the-art methods, which proves the proposed QoE model can effectively guide the client’s bitrate selection in dynamic adaptive streaming media services.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Hongyun Zheng ◽  
Yongxiang Zhao ◽  
Xi Lu ◽  
Rongzhen Cao

Video service has become a killer application for mobile terminals. For providing such services, most of the traffic is carried by the Dynamic Adaptive Streaming over HTTP (DASH) technique. The key to improve video quality perceived by users, i.e., Quality of Experience (QoE), is to effectively characterize it by using measured data. There have been many literatures that studied this issue. Some existing solutions use probe mechanism at client/server, which, however, are not applicable to network operator. Some other solutions, which aimed to predict QoE by deep packet parsing, cannot work properly as more and more video traffic is encrypted. In this paper, we propose a fog-assisted real-time QoE prediction scheme, which can predict the QoE of DASH-supported video streaming using fog nodes. Neither client/server participations nor deep packet parsing at network equipment is needed, which makes this scheme easy to deploy. Experimental results show that this scheme can accurately detect QoE with high accuracy even when the video traffic is encrypted.


2019 ◽  
Vol 9 (11) ◽  
pp. 2297
Author(s):  
Kyeongseon Kim ◽  
Dohyun Kwon ◽  
Joongheon Kim ◽  
Aziz Mohaisen

As the demand for over-the-top and online streaming services exponentially increases, many techniques for Quality of Experience (QoE) provisioning have been studied. Users can take actions (e.g., skipping) while streaming a video. Therefore, we should consider the viewing pattern of users rather than the network condition or video quality. In this context, we propose a proactive content-loading algorithm for improving per-user personalized preferences using multinomial softmax classification. Based on experimental results, the proposed algorithm has a personalized per-user content waiting time that is significantly lower than that of competing algorithms.


2016 ◽  
Vol 2016 (15) ◽  
pp. 1-5 ◽  
Author(s):  
Pradip Paudyal ◽  
Yiwei Liu ◽  
Federica Battisti ◽  
Marco Carli

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Youssef Lahbabi ◽  
El Hassan Ibn Elhaj ◽  
Ahmed Hammouch

In this paper, we propose a new Scalable Video Coding (SVC) quality-adaptive peer-to-peer television (P2PTV) system executed at the peers and at the network. The quality adaptation mechanisms are developed as follows: on one hand, the Layer Level Initialization (LLI) is used for adapting the video quality with the static resources at the peers in order to avoid long startup times. On the other hand, the Layer Level Adjustment (LLA) is invoked periodically to adjust the SVC layer to the fluctuation of the network conditions with the aim of predicting the possible stalls before their occurrence. Our results demonstrate that our mechanisms allow quickly adapting the video quality to various system changes while providing best Quality of Experience (QoE) that matches current resources of the peer devices and instantaneous throughput available at the network state.


2020 ◽  
Author(s):  
qahhar muhammad qadir ◽  
Alexander A. Kist ◽  
ZHONGWEI ZHANG

The popularity of the video services on the Internet has evolved various mechanisms that target the Quality of Experience (QoE) optimization of video traffic. The video quality has been enhanced through adapting the sending bitrates. However, rate adaptation alone is not sufficient for maintaining a good video QoE when congestion occurs. This paper presents a cross-layer architecture for video streaming that is QoE-aware. It combines adaptation capabilities of video applications and QoE-aware admission control to optimize the trade-off relationship between QoE and the number of admitted sessions. Simulation results showed the efficiency of the proposed architecture in terms of QoE and number of sessions compared to two other architectures (adaptive architecture and non-adaptive architecture ).


Author(s):  
Ozgur Oyman ◽  
Vishwanath Ramamurthi ◽  
Utsaw Kumar ◽  
Mohamed Rehan ◽  
Rana Morsi

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Asif Ali Laghari ◽  
Hui He ◽  
Shahid Karim ◽  
Himat Ali Shah ◽  
Nabin Kumar Karn

Video sharing on social clouds is popular among the users around the world. High-Definition (HD) videos have big file size so the storing in cloud storage and streaming of videos with high quality from cloud to the client are a big problem for service providers. Social clouds compress the videos to save storage and stream over slow networks to provide quality of service (QoS). Compression of video decreases the quality compared to original video and parameters are changed during the online play as well as after download. Degradation of video quality due to compression decreases the quality of experience (QoE) level of end users. To assess the QoE of video compression, we conducted subjective (QoE) experiments by uploading, sharing, and playing videos from social clouds. Three popular social clouds, Facebook, Tumblr, and Twitter, were selected to upload and play videos online for users. The QoE was recorded by using questionnaire given to users to provide their experience about the video quality they perceive. Results show that Facebook and Twitter compressed HD videos more as compared to other clouds. However, Facebook gives a better quality of compressed videos compared to Twitter. Therefore, users assigned low ratings for Twitter for online video quality compared to Tumblr that provided high-quality online play of videos with less compression.


2020 ◽  
Author(s):  
qahhar muhammad qadir ◽  
Alexander A. Kist ◽  
ZHONGWEI ZHANG

The popularity of the video services on the Internet has evolved various mechanisms that target the Quality of Experience (QoE) optimization of video traffic. The video quality has been enhanced through adapting the sending bitrates. However, rate adaptation alone is not sufficient for maintaining a good video QoE when congestion occurs. This paper presents a cross-layer architecture for video streaming that is QoE-aware. It combines adaptation capabilities of video applications and QoE-aware admission control to optimize the trade-off relationship between QoE and the number of admitted sessions. Simulation results showed the efficiency of the proposed architecture in terms of QoE and number of sessions compared to two other architectures (adaptive architecture and non-adaptive architecture ).


Sign in / Sign up

Export Citation Format

Share Document