scholarly journals Quality of Experience Assessment of Video Quality in Social Clouds

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Asif Ali Laghari ◽  
Hui He ◽  
Shahid Karim ◽  
Himat Ali Shah ◽  
Nabin Kumar Karn

Video sharing on social clouds is popular among the users around the world. High-Definition (HD) videos have big file size so the storing in cloud storage and streaming of videos with high quality from cloud to the client are a big problem for service providers. Social clouds compress the videos to save storage and stream over slow networks to provide quality of service (QoS). Compression of video decreases the quality compared to original video and parameters are changed during the online play as well as after download. Degradation of video quality due to compression decreases the quality of experience (QoE) level of end users. To assess the QoE of video compression, we conducted subjective (QoE) experiments by uploading, sharing, and playing videos from social clouds. Three popular social clouds, Facebook, Tumblr, and Twitter, were selected to upload and play videos online for users. The QoE was recorded by using questionnaire given to users to provide their experience about the video quality they perceive. Results show that Facebook and Twitter compressed HD videos more as compared to other clouds. However, Facebook gives a better quality of compressed videos compared to Twitter. Therefore, users assigned low ratings for Twitter for online video quality compared to Tumblr that provided high-quality online play of videos with less compression.

2020 ◽  
Vol 10 (5) ◽  
pp. 1793
Author(s):  
Lina Du ◽  
Li Zhuo ◽  
Jiafeng Li ◽  
Jing Zhang ◽  
Xiaoguang Li ◽  
...  

DASH (Dynamic Adaptive Streaming over HTTP (HyperText Transfer Protocol)) as a universal unified multimedia streaming standard selects the appropriate video bitrate to improve the user’s Quality of Experience (QoE) according to network conditions, client status, etc. Considering that the quantitative expression of the user’s QoE is also a difficult point in itself, this paper researched the distortion caused due to video compression, network transmission and other aspects, and then proposes a video QoE metric for dynamic adaptive streaming services. Three-Dimensional Convolutional Neural Networks (3D CNN) and Long Short-Term Memory (LSTM) are used together to extract the deep spatial-temporal features to represent the content characteristics of the video. While accounting for the fluctuation in the quality of a video caused by bitrate switching on the QoE, other factors such as video content characteristics, video quality and video fluency, are combined to form the input feature vector. The ridge regression method is adopted to establish a QoE metric that enables to dynamically describe the relationship between the input feature vector and the value of the Mean Opinion Score (MOS). The experimental results on different datasets demonstrate that the prediction accuracy of the proposed method can achieve superior performance over the state-of-the-art methods, which proves the proposed QoE model can effectively guide the client’s bitrate selection in dynamic adaptive streaming media services.


Author(s):  
Maria Torres Vega ◽  
Vittorio Sguazzo ◽  
Decebal Constantin Mocanu ◽  
Antonio Liotta

Purpose The Video Quality Metric (VQM) is one of the most used objective methods to assess video quality, because of its high correlation with the human visual system (HVS). VQM is, however, not viable in real-time deployments such as mobile streaming, not only due to its high computational demands but also because, as a Full Reference (FR) metric, it requires both the original video and its impaired counterpart. In contrast, No Reference (NR) objective algorithms operate directly on the impaired video and are considerably faster but loose out in accuracy. The purpose of this paper is to study how differently NR metrics perform in the presence of network impairments. Design/methodology/approach The authors assess eight NR metrics, alongside a lightweight FR metric, using VQM as benchmark in a self-developed network-impaired video data set. This paper covers a range of methods, a diverse set of video types and encoding conditions and a variety of network impairment test-cases. Findings The authors show the extent by which packet loss affects different video types, correlating the accuracy of NR metrics to the FR benchmark. This paper helps identifying the conditions under which simple metrics may be used effectively and indicates an avenue to control the quality of streaming systems. Originality/value Most studies in literature have focused on assessing streams that are either unaffected by the network (e.g. looking at the effects of video compression algorithms) or are affected by synthetic network impairments (i.e. via simulated network conditions). The authors show that when streams are affected by real network conditions, assessing Quality of Experience becomes even harder, as the existing metrics perform poorly.


2020 ◽  
Author(s):  
Alexander A. Kist ◽  
qahhar muhammad qadir ◽  
ZHONGWEI ZHANG

With the inevitable dominance of video traffic on the Internet, providing perceptually good video quality is becoming a challenging task. This is partly due to the bursty nature of video traffic, changing network conditions and limitations of network transport protocols. This growth of video traffic has made Quality of Experience (QoE) of the end user the focus of the research community. In contrast, Internet service providers are concerned about maximizing revenue by accepting as many sessions as possible, as long as customers remain satisfied. However, there is still no entirely satisfactory admission algorithm for flows with variable rate. The trade-off between the number of sessions and perceived QoE can be optimized by exploiting the bursty nature of video traffic. This paper proposes a novel algorithm to determine the upper limit of the aggregate video rate that can exceed the available bandwidth without degrading the QoE of accepted video sessions. A parameter $\beta$ that defines the exceedable limit is defined. The proposed algorithm results in accepting more sessions without compromising the QoE of on-going video sessions. Thus it contributes to the optimization of the QoE-Session trade-off in support of the expected growth of video traffic on the Internet.


2020 ◽  
Author(s):  
Alexander A. Kist ◽  
qahhar muhammad qadir ◽  
ZHONGWEI ZHANG

With the inevitable dominance of video traffic on the Internet, providing perceptually good video quality is becoming a challenging task. This is partly due to the bursty nature of video traffic, changing network conditions and limitations of network transport protocols. This growth of video traffic has made Quality of Experience (QoE) of the end user the focus of the research community. In contrast, Internet service providers are concerned about maximizing revenue by accepting as many sessions as possible, as long as customers remain satisfied. However, there is still no entirely satisfactory admission algorithm for flows with variable rate. The trade-off between the number of sessions and perceived QoE can be optimized by exploiting the bursty nature of video traffic. This paper proposes a novel algorithm to determine the upper limit of the aggregate video rate that can exceed the available bandwidth without degrading the QoE of accepted video sessions. A parameter $\beta$ that defines the exceedable limit is defined. The proposed algorithm results in accepting more sessions without compromising the QoE of on-going video sessions. Thus it contributes to the optimization of the QoE-Session trade-off in support of the expected growth of video traffic on the Internet.


Author(s):  
Chelsea DeGuzman ◽  
Mark Chignell ◽  
Jie Jiang ◽  
Leon Zucherman

While previous research has shown that the sequencing of good and bad experience is an important predictor of overall evaluations of a set of experiences, the impact of sequencing effects on the experience of viewing online video has yet to be established. The aim of this study was to determine whether different sequences of good (G), mediocre (M), and bad (B) quality videos in different blocks would influence overall ratings after viewing those blocks. Thirty-two participants each watched 10 blocks of 4 videos and provided ratings of technical quality (TQ), satisfaction, and frustration for each video in the block, as well as overall ratings for each block (as a whole). Sequences of G, M, and B videos were designed to test whether block characteristics (features), like the peak-end effect and effect of linear trend, influenced summary evaluations of the block service. The results of the experiment show that overall block TQ, satisfaction, and frustration ratings differed significantly by sequencing feature. Difference scores were used to determine whether the features had an effect on overall evaluations beyond what could be explained by the total number of bad videos in the block or the average ratings of the videos in the block. Results showed a significant end effect for negative ends of a block, and an effect of linear trend (both increasing and decreasing). There was no evidence of a peak effect or an end effect for positive ends. The presence of a negative end effect and effect of linear trend indicate that where possible service providers should avoid service sessions with poor service quality at the end, or sessions that have decreasing quality as the session progresses.


2021 ◽  
Vol 20 (3) ◽  
pp. 1-25
Author(s):  
Elham Shamsa ◽  
Alma Pröbstl ◽  
Nima TaheriNejad ◽  
Anil Kanduri ◽  
Samarjit Chakraborty ◽  
...  

Smartphone users require high Battery Cycle Life (BCL) and high Quality of Experience (QoE) during their usage. These two objectives can be conflicting based on the user preference at run-time. Finding the best trade-off between QoE and BCL requires an intelligent resource management approach that considers and learns user preference at run-time. Current approaches focus on one of these two objectives and neglect the other, limiting their efficiency in meeting users’ needs. In this article, we present UBAR, User- and Battery-aware Resource management, which considers dynamic workload, user preference, and user plug-in/out pattern at run-time to provide a suitable trade-off between BCL and QoE. UBAR personalizes this trade-off by learning the user’s habits and using that to satisfy QoE, while considering battery temperature and State of Charge (SOC) pattern to maximize BCL. The evaluation results show that UBAR achieves 10% to 40% improvement compared to the existing state-of-the-art approaches.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1949
Author(s):  
Lukas Sevcik ◽  
Miroslav Voznak

Video quality evaluation needs a combined approach that includes subjective and objective metrics, testing, and monitoring of the network. This paper deals with the novel approach of mapping quality of service (QoS) to quality of experience (QoE) using QoE metrics to determine user satisfaction limits, and applying QoS tools to provide the minimum QoE expected by users. Our aim was to connect objective estimations of video quality with the subjective estimations. A comprehensive tool for the estimation of the subjective evaluation is proposed. This new idea is based on the evaluation and marking of video sequences using the sentinel flag derived from spatial information (SI) and temporal information (TI) in individual video frames. The authors of this paper created a video database for quality evaluation, and derived SI and TI from each video sequence for classifying the scenes. Video scenes from the database were evaluated by objective and subjective assessment. Based on the results, a new model for prediction of subjective quality is defined and presented in this paper. This quality is predicted using an artificial neural network based on the objective evaluation and the type of video sequences defined by qualitative parameters such as resolution, compression standard, and bitstream. Furthermore, the authors created an optimum mapping function to define the threshold for the variable bitrate setting based on the flag in the video, determining the type of scene in the proposed model. This function allows one to allocate a bitrate dynamically for a particular segment of the scene and maintains the desired quality. Our proposed model can help video service providers with the increasing the comfort of the end users. The variable bitstream ensures consistent video quality and customer satisfaction, while network resources are used effectively. The proposed model can also predict the appropriate bitrate based on the required quality of video sequences, defined using either objective or subjective assessment.


Sign in / Sign up

Export Citation Format

Share Document