scholarly journals Effect of SIFRCCs with Varying Steel Fiber Volume Fractions on Flexural Behavior

2020 ◽  
Vol 10 (6) ◽  
pp. 2072
Author(s):  
Seungwon Kim ◽  
Cheolwoo Park ◽  
Yongjae Kim

Conventional concrete is a brittle material with a very low tensile strength as a result of compressive strength and tensile strain. In this study, the flexural behavior characteristics of slurry-infiltrated fiber-reinforced cementitious composites (SIFRCCs) based on slurry-infiltrated fiber concrete (SIFCON), such as high-performance fiber-reinforced cementitious composites (HPFRCCs), were analyzed to maximize the fiber volume fraction and increase resistance to loads with very short working times (such as explosions or impacts). For extensive experimental variables, one fiber aspect ratio and three fiber volume fractions (6%, 5%, and 4%) were designed, and the flexural toughness and strength were figured out with respect to variables. A maximum flexural strength of 45 MPa was presented for a fiber volume fraction of 6%, and it was found that by increasing the fiber volume fraction the flexural strength and toughness increased. The test results with respect to fiber volume fraction revealed that after the initial crack, the load of SIFRCCs frequently increased because of the high fiber volume fraction. In addition to maximum strength, acceptable strength was found, which could have a positive effect on brittle fractures in structures where an accidental load is applied (such as an impact or explosion).

2021 ◽  
Vol 879 ◽  
pp. 284-293
Author(s):  
Norliana Bakar ◽  
Siew Choo Chin

Fiber Reinforced Polymer (FRP) made from synthetic fiber had been widely used for strengthening of reinforced concrete (RC) structures in the past decades. Due to its high cost, detrimental to the environment and human health, natural fiber composites becoming the current alternatives towards a green and environmental friendly material. This paper presents an investigation on the mechanical properties of bamboo fiber reinforced composite (BFRC) with different types of resins. The BFRC specimens were prepared by hand lay-up method using epoxy and vinyl-ester resins. Bamboo fiber volume fractions, 30%, 35%, 40%, 45% and 50% was experimentally investigated by conducting tensile and flexural test, respectively. Results showed that the tensile and flexural strength of bamboo fiber reinforced epoxy composite (BFREC) was 63.2% greater than the bamboo fiber reinforced vinyl-ester composite (BFRVC). It was found that 45% of bamboo fiber volume fraction on BFREC exhibited the highest tensile strength compared to other BFRECs. Meanwhile, 40% bamboo fiber volume fraction of BFRVC showed the highest tensile strength between bamboo fiber volume fractions for BFRC using vinyl-ester resin. Studies showed that epoxy-based BFRC exhibited excellent results compared to the vinyl-ester-based composite. Further studies are required on using BFRC epoxy-based composite in various structural applications and strengthening purposes.


2019 ◽  
Vol 9 (6) ◽  
pp. 1241 ◽  
Author(s):  
Seung-Jung Lee ◽  
Doo-Yeol Yoo ◽  
Do-Young Moon

This study investigates the effects of hooked-end fiber geometry and volume fraction on the flexural behavior of concrete pedestrian decks. To achieve this, three different fiber geometries, i.e., three-dimensional (3D), four-dimensional (4D), and five-dimensional (5D), and volume fractions of 0.37%, 0.6%, and 1.0% were considered. Test results indicate that a higher number of hook ends can more effectively enhance the flexural strength and flexural strength margin at all volume fractions than a lower number, so that the order of effectiveness of hooked-end fibers on the flexural strength parameters was as follows: 5D > 4D > 3D. To satisfy the ductility index of 0.39, the amounts of 3D, 4D, and 5D hooked steel fibers should be in the range of 0.98%‒1.10%. Moreover, at a fiber volume fraction of 1.0%, only multiple cracking behaviors were observed, and the numerical results indicated that the volume fraction should be equal to 1.0% to guarantee a deflection-hardening response of pedestrian decks, regardless of the hooked-end fiber geometry. Consequently, a 1.0% by volume of hooked-end steel fiber is recommended to replace the minimum longitudinal steel rebars and guarantee a ductile flexural behavior with multiple cracks for pedestrian decks made of high-strength concrete.


2013 ◽  
Vol 438-439 ◽  
pp. 270-274
Author(s):  
Hai Long Wang ◽  
Guang Yu Peng ◽  
Yue Jing Luo ◽  
Xiao Yan Sun

Engineered cementitious composite (ECC) is a representative of the new generation of high performance fiber reinforced cementitious composites. To reveal the influence of mineral admixtures on the tensile mechanical characteristics of polyvinyl alcohol fiber reinforced engineered cementitious composites (PVA-ECC), the tensile properties of PVA-ECC with replacing cement by a significant amount of fly ash (FA), silica fume (SF) and metakaolin (MK) was experimentally investigated. Uniaxial tensile experiment was carried out using rectangular thin plate with sizes of 400×100×15mm3. Results from uniaxial tensile tests show that these mineral admixtures can improve the properties of PVA-ECC. The composite can achieve an ultimate strain of 2.0%, as well as an ultimate strength of 4.0MPa, with a moderate fiber volume fraction of 2.0%. In addition, the composites with FA, SF and MK show saturated multiple cracking characteristics with crack width at ultimate strain limited to below 175μm.


2012 ◽  
Vol 204-208 ◽  
pp. 3961-3964
Author(s):  
Yao Wang ◽  
Wei Hong Xuan ◽  
Yu Zhi Chen ◽  
Xiao Hong Chen ◽  
Gang Zheng

The compressive and flexural strength of ordinary mortar and fiber reinforced mortar with five different pp fiber content were tested in this paper. The results show that the compressive strength reduced gradually with PP fiber increasing, and the flexural strength increased when the fiber volume fraction is no more than 0.12%. The higher water ratio can weaken the cohesiveness of the fiber and cement material, and the influence of polypropylene fiber on the flexural strength of mortar decreased after soaking. The major strength damage in the process of curing is caused in the early age and appropriate amount of fiber is beneficial to reduce strength damage.


2010 ◽  
Vol 34-35 ◽  
pp. 1445-1448 ◽  
Author(s):  
Shu Guang Liu ◽  
Cun He ◽  
Chang Wang Yan ◽  
Xiao Ming Zhao

This paper mainly studies early anti-cracking of cementitious composites containing polyvinyl alcohol (PVA) fiber and fly ash (FA). The PVA fibers were added at the volume fractions of 0%, 0.25%, 0.5%, 1.0% and 2.0%. The percentages of FA used in the experiment were 0% and 15%. Experimental results show that the maximum crack width and total crack area can be reduced with the increase of volume fraction of PVA fiber, and that no crack appeared at the volume fraction of 2.0%. The reducing tendency of crack width and total crack area kept constant with addition of FA, but reducing amplitude decreased. When the PVA fiber volume fraction remains constant, the early anti-cracking properties of cementitious composites containing PVA fiber and common cement are superior to one containing PVA fiber and FA. Conclusions can be drawn that the early anti-cracking properties of cementitious composites can be improved by PVA fiber.


2016 ◽  
Vol 709 ◽  
pp. 101-104 ◽  
Author(s):  
Seok Joon Jang ◽  
Gwon Young Jeong ◽  
Mi Hwa Lee ◽  
Keitetsu Rokugo ◽  
Hyun Do Yun

This paper presents results of experimental investigation to evaluation the effects of compressive strength on flexural behavior of steel fiber-reinforced concrete (SFRC). For this purpose, normal and high strength SFRCs with two different fiber volume fractions of 0.5 and 1.0% were prepared. Compressive strength, modulus of elasticity, flexural strength and toughness were measured with tests on SFRC cylinders and prisms. Test results indicated that steel fiber volume fraction significantly affects the flexural strength and toughness of SFRC. However, the high strength SFRC showed reduction in flexural toughness compared with the normal strength SFRC. It can be concluded that flexural behavior of SFRC depends on both compressive strength and fiber volume fraction.


2021 ◽  
pp. 002199832110047
Author(s):  
Mahmoud Mohamed ◽  
Siddhartha Brahma ◽  
Haibin Ning ◽  
Selvum Pillay

Fiber prestressing during matrix curing can significantly improve the mechanical properties of fiber-reinforced polymer composites. One primary reason behind this improvement is the generated compressive residual stress within the cured matrix, which impedes cracks initiation and propagation. However, the prestressing force might diminish progressively with time due to the creep of the compressed matrix and the relaxation of the tensioned fiber. As a result, the initial compressive residual stress and the acquired improvement in mechanical properties are prone to decline over time. Therefore, it is necessary to evaluate the mechanical properties of the prestressed composites as time proceeds. This study monitors the change in the tensile and flexural properties of unidirectional prestressed glass fiber reinforced epoxy composites over a period of 12 months after manufacturing. The composites were prepared using three different fiber volume fractions 25%, 30%, and 40%. The results of mechanical testing showed that the prestressed composites acquired an initial increase up to 29% in the tensile properties and up to 32% in the flexural properties compared to the non-prestressed counterparts. Throughout the 12 months of study, the initial increase in both tensile and flexural strength showed a progressive reduction. The loss ratio of the initial increase was observed to be inversely proportional to the fiber volume fraction. For the prestressed composites fabricated with 25%, 30%, and 40% fiber volume fraction, the initial increase in tensile and flexural strength dropped by 29%, 25%, and 17%, respectively and by 34%, 26%, and 21%, respectively at the end of the study. Approximately 50% of the total loss took place over the first month after the manufacture, while after the sixth month, the reduction in mechanical properties became insignificant. Tensile modulus started to show a very slight reduction after the fourth/sixth month, while the flexural modulus reduction was observed from the beginning. Although the prestressed composites displayed time-dependent losses, their long-term mechanical properties still outperformed the non-prestressed counterparts.


2021 ◽  
pp. 152808372110003
Author(s):  
M Atta ◽  
A Abu-Sinna ◽  
S Mousa ◽  
HEM Sallam ◽  
AA Abd-Elhady

The bending test is one of the most important tests that demonstrates the advantages of functional gradient (FGM) materials, thanks to the stress gradient across the specimen depth. In this research, the flexural response of functionally graded polymeric composite material (FGM) is investigated both experimentally and numerically. Fabricated by a hand lay-up manufacturing technique, the unidirectional glass fiber reinforced epoxy composite composed of ten layers is used in the present investigation. A 3-D finite element simulation is used to predict the flexural strength based on Hashin’s failure criterion. To produce ten layers of FGM beams with different patterns, the fiber volume fraction ( Vf%) ranges from 10% to 50%. A comparison between FGM beams and conventional composite beams having the same average Vf% is made. The experimental results show that the failure of the FGM beams under three points bending loading (3PB) test is initiated from the tensioned layers, and spread to the upper layer. The spreading is followed by delamination accompanied by shear failures. Finally, the FGM beams fail due to crushing in the compression zone. Furthermore, the delamination failure between the layers has a major effect on the rapidity of the final failure of the FGM beams. The present numerical results show that the gradient pattern of FGM beams is a critical parameter for improving their flexural behavior. Otherwise, Vf% of the outer layers of the FGM beams, i.e. Vf% = 30, 40, or 50%, is responsible for improving their flexural strength.


2019 ◽  
Vol 253 ◽  
pp. 02004
Author(s):  
Wael Alnahhal ◽  
Omar Aljidda

This study investigates the effect of using different volume fractions of basalt macro fibers (BMF) on the flexural behavior of concrete beams made with 100% recycled concrete aggregates (RCA) experimentally. A total of 4 reinforced concrete (RC) beam specimens were flexural tested until failure. The parameter investigated included the BMF volume fraction (0%, 0.5%, 1%, and 1.5%). The testing results of the specimens were compared to control beam specimen made with no added fibers. The experimental results showed that adding BMF improves the flexural capacity of the tested beams.


Sign in / Sign up

Export Citation Format

Share Document