scholarly journals Improving and Optimizing Sound Absorption Performance of Polyurethane Foam by Prepositive Microperforated Polymethyl Methacrylate Panel

2020 ◽  
Vol 10 (6) ◽  
pp. 2103
Author(s):  
Xiaocui Yang ◽  
Xinmin Shen ◽  
Haiqin Duan ◽  
Fei Yang ◽  
Xiaonan Zhang ◽  
...  

Sound absorption performance of polyurethane foam could be improved by adding a prepositive microperforated polymethyl methacrylate panel to form a composite sound-absorbing structure. A theoretical sound absorption model of polyurethane foam and that of the composite structure were constructed by the transfer matrix method based on the Johnson–Champoux–Allard model and Maa’s theory. Acoustic parameter identification of the polyurethane foam and structural parameter optimization of the composite structures were obtained by the cuckoo search algorithm. The identified porosity and static flow resistivity were 0.958 and 13078 Pa·s/m2 respectively, and their accuracies were proved by the experimental validation. Sound absorption characteristics of the composite structures were verified by finite element simulation in virtual acoustic laboratory and validated through standing wave tube measurement in AWA6128A detector. Consistencies among the theoretical data, simulation data, and experimental data of sound absorption coefficients of the composite structures proved the effectiveness of the theoretical sound absorption model, cuckoo search algorithm, and finite element simulation method. Comparisons of actual average sound absorption coefficients of the optimal composite structure with those of the original polyurethane foam proved the practicability of this identification and optimization method, which was propitious to promote its practical application in noise reduction.

Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 588 ◽  
Author(s):  
Fei Yang ◽  
Xinmin Shen ◽  
Panfeng Bai ◽  
Xiaonan Zhang ◽  
Zhizhong Li ◽  
...  

Sound absorption performance of a porous metal can be improved by compression and optimal permutation, which is favorable to promote its application in noise reduction. The 10-layer gradient compressed porous metal was proposed to obtain optimal sound absorption performance. A theoretical model of the sound absorption coefficient of the multilayer gradient compressed porous metal was constructed according to the Johnson-Champoux-Allard model. Optimal parameters for the best sound absorption performance of the 10-layer gradient compressed porous metal were achieved by a cuckoo search algorithm with the varied constraint conditions. Preliminary verification of the optimal sound absorber was conducted by the finite element simulation, and further experimental validation was obtained through the standing wave tube measurement. Consistencies among the theoretical data, the simulation data, and the experimental data proved accuracies of the theoretical sound absorption model, the cuckoo search optimization algorithm, and the finite element simulation method. For the investigated frequency ranges of 100–1000 Hz, 100–2000 Hz, 100–4000 Hz, and 100–6000 Hz, actual average sound absorption coefficients of optimal 10-layer gradient compressed porous metal were 0.3325, 0.5412, 0.7461, and 0.7617, respectively, which exhibited the larger sound absorption coefficients relative to those of the original porous metals and uniform 10-layer compressed porous metal with the same thickness of 20 mm.


2019 ◽  
Vol 67 (3) ◽  
pp. 197-209 ◽  
Author(s):  
Xiaocui Yang ◽  
Liang Chen ◽  
Xinmin Shen ◽  
Panfeng Bai ◽  
Sandy To ◽  
...  

Standardized multilayer microperforated panel fabricated by laser beam machining of the spring steel was proposed for noise reduction in this study. Geometric parameters of the standardized multilayer microperforated panel, which include diameter of the hole, thickness of the panel, distance between the neighbor holes, and length of the cavity, were optimized for the better sound absorption performance. Sound absorption coefficient of the standardized multilayer microperforated panel was theoretically modeled based on the Maa's theory. The optimization of geometric parameters of the standardized multilayer microperforated panel was obtained by the Cuckoo search algorithm, and the finite dimension of 30 mm was treated as the additional constraint condition. Preliminary verification of the obtained optimal parameters was conducted through the constructed finite element simulation model. Actual sound absorption coefficients of the standardized multilayer microperforated panels with layer number of 1 to 4 were measured by standing wave method, which were consistent with theoretical data and simulation data, and the corresponding average values in the frequency range of 100â–“6000 Hz were 57.45%, 70.85%, 71.99%, and 72.28%, respectively. By theoretical modeling, parameter optimization, simulation, and experimental validation, an effective method was proposed to develop practical sound absorbers, which would promote their applications in noise reduction.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 340 ◽  
Author(s):  
Xiaocui Yang ◽  
Xinmin Shen ◽  
Haiqin Duan ◽  
Xiaonan Zhang ◽  
Qin Yin

Porous metal is widely used in the fields of sound absorption and noise reduction, and it is a critical procedure to identify acoustic characteristic parameters and to improve sound absorption performances. Based on the constructed theoretical sound absorption model and experimental data, acoustic characteristic parameters of the porous metal were identified through the cuckoo search identification algorithm, and their reliabilities were certified through comparing with these labeled parameters and further experimental validation. By adding the microperforated metal panel in front of the porous metal, a composite sound-absorbing structure was formed, which aimed to improve the sound absorption performance of the original porous metal by optimizing the parameters. Finite element simulation and a standing wave tube measurement were conducted to validate the effectiveness and practicability of the optimal composite sound-absorbing structure. Consistencies among theoretical predictions, simulation results, and experimental data proved the effectiveness of the identification and optimization method. When the target frequency ranges were 100–1000 Hz, 100–2000 Hz, 100–3000 Hz, and 100–4000 Hz. Actual average sound absorption coefficients of the optimal composite structures were 0.5154, 0.6369, 0.6770, and 0.7378, respectively, which exhibited the obvious improvements with a tiny increase in the occupied space and a small addition in weight.


2020 ◽  
Vol 39 (6) ◽  
pp. 8125-8137
Author(s):  
Jackson J Christy ◽  
D Rekha ◽  
V Vijayakumar ◽  
Glaucio H.S. Carvalho

Vehicular Adhoc Networks (VANET) are thought-about as a mainstay in Intelligent Transportation System (ITS). For an efficient vehicular Adhoc network, broadcasting i.e. sharing a safety related message across all vehicles and infrastructure throughout the network is pivotal. Hence an efficient TDMA based MAC protocol for VANETs would serve the purpose of broadcast scheduling. At the same time, high mobility, influential traffic density, and an altering network topology makes it strenuous to form an efficient broadcast schedule. In this paper an evolutionary approach has been chosen to solve the broadcast scheduling problem in VANETs. The paper focusses on identifying an optimal solution with minimal TDMA frames and increased transmissions. These two parameters are the converging factor for the evolutionary algorithms employed. The proposed approach uses an Adaptive Discrete Firefly Algorithm (ADFA) for solving the Broadcast Scheduling Problem (BSP). The results are compared with traditional evolutionary approaches such as Genetic Algorithm and Cuckoo search algorithm. A mathematical analysis to find the probability of achieving a time slot is done using Markov Chain analysis.


Author(s):  
Yang Wang ◽  
Feifan Wang ◽  
Yujun Zhu ◽  
Yiyang Liu ◽  
Chuanxin Zhao

AbstractIn wireless rechargeable sensor network, the deployment of charger node directly affects the overall charging utility of sensor network. Aiming at this problem, this paper abstracts the charger deployment problem as a multi-objective optimization problem that maximizes the received power of sensor nodes and minimizes the number of charger nodes. First, a network model that maximizes the sensor node received power and minimizes the number of charger nodes is constructed. Second, an improved cuckoo search (ICS) algorithm is proposed. This algorithm is based on the traditional cuckoo search algorithm (CS) to redefine its step factor, and then use the mutation factor to change the nesting position of the host bird to update the bird’s nest position, and then use ICS to find the ones that maximize the received power of the sensor node and minimize the number of charger nodes optimal solution. Compared with the traditional cuckoo search algorithm and multi-objective particle swarm optimization algorithm, the simulation results show that the algorithm can effectively increase the receiving power of sensor nodes, reduce the number of charger nodes and find the optimal solution to meet the conditions, so as to maximize the network charging utility.


Sign in / Sign up

Export Citation Format

Share Document