scholarly journals The Influence and Application of Slag, Fly Ash, and Limestone Flour on Compressive Strength of Concrete Based on the Concrete Compressive Strength Development over Time (CCSDOT) Model

2020 ◽  
Vol 10 (10) ◽  
pp. 3572
Author(s):  
Jian Zheng ◽  
Guohua Liu

Concrete and cement have been widely used in past decades as a result of urbanization. More and more supplementary cementitious materials are adopted in concrete because its production complements environmental conservation. The influence of slag, fly ash, limestone, etc., on compressive strength of concrete is of interest to engineers worldwide. Many previous studies were specific to certain engineering or certain experiments that could not reveal the nature of the influence of the three supplementary cementitious materials on concrete’s compressive strength. The research concerning the influence of two or more kinds of supplementary cementitious materials on concrete’s compressive strength is still unclear. Moreover, there is a lack of clarity on the optimum proportion of one or more certain cementitious materials in practical engineering or experiments. To overcome these problems, this study adopts the concrete compressive strength development over time (CCSDOT) model, which generates an explicit formula to conduct quantitative research based on extensive data. The CCSDOT model performs well in fitting the compressive strength development of concrete containing cement, slag, fly ash, and limestone flour. The results reveal the nature of the influence of the three supplementary cementitious materials on concrete’s compressive strength through the parameter analysis in the model. Two application cases are analyzed concerning the selection of the three supplementary cementitious materials and design of concrete mix proportion for practical engineering. It is concluded that the CCSDOT model and the method in this study can possibly provide guidance on both the selection of supplementary cementitious materials and the design of optimal concrete mix proportion for practical engineering. Therefore, the study is highly essential and useful.

2020 ◽  
Vol 6 (7) ◽  
pp. 1400-1410
Author(s):  
Joel Sam

Decreasing our over-reliance on cement as an ingredient in the making of concrete due to its contribution to the CO2 emissions has led to numerous researches been conducted to find suitable replacement for cement in concrete mixes.  Materials like fly ash, ground granulated blast furnace slag, silica fume, rice husk ash and metakaolin among others have been identified as materials that can at the very least be used as a replacement for cement in concrete mix. These materials are referred to as supplementary cementitious materials (SCMs). This paper reviewed the work that has been done on the use of fly ash and rice husk ash as partial replacements for concrete, its chemical composition and its effect on the compressive strength of concrete. Charts, tables and figures were employed as tools to study the various chemical compounds of fly ash and rice husk ash. It was seen that depending on how the coal or rice husk was initially processed the percentage of some of the minor compounds like Sodium oxide (Na2O), Titanium oxide (TiO2) and Phosphorus pentoxide (P2O5) were sometimes very low or not recorded as part of the final product.  The data on the compressive strength of concrete after fly ash and rice husk ash had been added in percentage increments of 0%, 10%, 20%, 30%, 40%, 50% and 0%, 5%, 7.5%, 10%, 12.5%, 15% respectively analysed over a minimum period of 7 days and a maximum period of 28 days found out that the optimal percentage partial replacement of fly ash and rice husk ash for a strong compressive concrete strength is 30% of fly ash and 7.5% of rice husk ash.


2019 ◽  
Vol 4 ◽  
pp. 9-15
Author(s):  
Md Shamsuddoha ◽  
Götz Hüsken ◽  
Wolfram Schmidt ◽  
Hans-Carsten Kühne ◽  
Matthias Baeßler

Grouts have numerous applications in construction industry such as joint sealing, structural repair, and connections in precast elements. They are particularly favoured in rehabilitation of structures due to penetrability and convenience of application. Grouts for repair applications typically require high-performance properties such as rapid strength development and superior shrinkage characteristics. Sometimes industrial by-products referred as supplementary cementitious materials (SCM) are used with neat cement due to their capabilities to provide binding properties at delayed stage. Micro silica, fly ash and metakaolin are such SCMs, those can modify and improve properties of cement products. This study aims at investigating long-term mass loss and linear shrinkage along with long-term compressive and flexural strength for grouts produced from ultrafine cement and SCMs. A series of mixtures were formulated to observe the effect of SCMs on these grout properties. Properties were determined after 365 days of curing at 23oC and 55% relative humidity. The effect of SCMs on the properties are characterised by statistical models. Response surfaces were constructed to quantify these properties in relation to SCMs replacement. The results suggested that shrinkage was reduced by metakaolin, while micro silica and fly ash had positive effects on compressive and flexural strength, respectively.


Author(s):  
W. Micah Hale ◽  
Thomas D. Bush ◽  
Bruce W. Russell ◽  
Seamus F. Freyne

Often, concrete is not mixed or placed under ideal conditions. Particularly in the winter or the summer months, the temperature of fresh concrete is quite different from that of concrete mixed under laboratory conditions. This paper examines the influence of supplementary cementitious materials on the strength development (and other hardened properties) of concrete subjected to different curing regimens. The supplementary cementitious materials used in the research program were ground granulated blast furnace slag (GGBFS), fly ash, and a combination of both materials. The three curing regimens used were hot weather curing, standard curing, and cold weather curing. Under the conditions tested, the results show that the addition of GGBFS at a relatively low replacement rate can improve the hardened properties for each curing regimen. This improvement was noticeable not only at later ages but also at early ages. Mixtures that contained both materials (GGBFS and fly ash) performed as well as and, in most cases, better than mixtures that contained only portland cement in all curing regimens.


2019 ◽  
Vol 26 (1) ◽  
pp. 449-464 ◽  
Author(s):  
Mifeng Gou ◽  
Longfei Zhou ◽  
Nathalene Wei Ying Then

AbstractOne of the advantages of cement and the cement concrete industry in sustainability is the ability to utilize large amounts of industrial solid wastes such as fly ash and ground granulated blast furnace slag. Tailings are solid wastes of the ore beneficiation process in the extractive industry and are available in huge amounts in some countries. This paper reviews the potential utilization of tailings as a replacement for fine aggregates, as supplementary cementitious materials (SCMs) in mortar or concrete, and in the production of cement clinker. It was shown in previous research that while tailings had been used as a replacement for both fine aggregate and cement, the workability of mortar or concrete reduced. Also, at a constant water to cement ratio, the compressive strength of concrete increased with the tailings as fine aggregate. However, the compressive strength of concrete decreased as the replacement content of the tailings as SCMs increased, even whentailings were ground into smaller particles. Not much research has been dedicated to the durability of concrete with tailings, but it is beneficial for heavy metals in tailings to stabilize/solidify in concrete. The clinker can be produced by using the tailings, even if the tailings have a low SiO2 content. As a result, the utilization of tailings in cement and concrete will be good for the environment both in the solid waste processing and virgin materials using in the construction industry.


2012 ◽  
Vol 204-208 ◽  
pp. 3970-3973
Author(s):  
Reagan J. Case ◽  
Kai Duan ◽  
Thuraichamy G. Suntharavadivel

As a part of a large research program aiming at the cementitious materials containing recycled materials at Central Queensland University – Australia, the current paper presents the preliminary results of a study on the effects of fly ash, which is used to replace cement in concrete, on the concrete compressive strength. For this purpose, systematic experiments have been carried out to investigate the influences of fly ash ratio and age. The compressive strength of concrete specimens with replacement ratios of 15%, 30% and 45%, and aged 7 and 28 days are measured and are compared with those of the concrete specimens without fly ash at the same ages. The results demonstrate that the strength of fly ash containing concrete improves more slowly but more strongly with aging, than their fly ash free counterparts, and an optimum fly ash replacement ratio exists where the maximum compressive strength of fly ash containing concrete can be achieved, and the maximum strength for the specimens aged 28 days and above is higher that of fly ash free concrete. Furthermore, the observation strength behaviours are analysed and discussed in terms of the influences of fly ash on interface reactions and interface bonding strength.


2018 ◽  
Vol 70 (11) ◽  
pp. 541-557 ◽  
Author(s):  
Gollapalli S. Vijaya Bhaskara ◽  
Kanchi Balaji Rao ◽  
Madambikkattil B. Anoop

2021 ◽  
Vol 293 ◽  
pp. 02023
Author(s):  
Pengtao Wang

In order to recycle the boulder powder produced in the process of manufactured sand production and reduce the cost of engineering concrete, this article studied the influence of boulders powder on the compressive strength of concrete. The results show that in the early stage of concrete test, the compressive strength of rock powder concrete is slightly lower than of fly ash and mineral powder concrete. With the development of curing age, the strength of boulders powder concrete developed slower. As the increase of boulders powder content, the compressive strength of different curing age gradually decreased, and it was suggested that the content of boulders powder should be controlled within 20% of cementitious materials mass. The positive effect of boulders powder fineness on the strength of concrete is limited, so it is suggested to use unprocessed collected boulders powder in the project, which is economical and environmentally friendly. With the adjustment of water-to-binder ratio, boulders powder can be prepared with different strength grades of concrete to meet the needs of engineering; the composite of boulders powder with traditional mineral admixtures, such as fly ash, and especially granulated blast furnace slag powder, can significantly improve the strength of concrete.


Sign in / Sign up

Export Citation Format

Share Document