scholarly journals Influence of boulder machine-made sand powder on compressive strength of concrete

2021 ◽  
Vol 293 ◽  
pp. 02023
Author(s):  
Pengtao Wang

In order to recycle the boulder powder produced in the process of manufactured sand production and reduce the cost of engineering concrete, this article studied the influence of boulders powder on the compressive strength of concrete. The results show that in the early stage of concrete test, the compressive strength of rock powder concrete is slightly lower than of fly ash and mineral powder concrete. With the development of curing age, the strength of boulders powder concrete developed slower. As the increase of boulders powder content, the compressive strength of different curing age gradually decreased, and it was suggested that the content of boulders powder should be controlled within 20% of cementitious materials mass. The positive effect of boulders powder fineness on the strength of concrete is limited, so it is suggested to use unprocessed collected boulders powder in the project, which is economical and environmentally friendly. With the adjustment of water-to-binder ratio, boulders powder can be prepared with different strength grades of concrete to meet the needs of engineering; the composite of boulders powder with traditional mineral admixtures, such as fly ash, and especially granulated blast furnace slag powder, can significantly improve the strength of concrete.

2012 ◽  
Vol 204-208 ◽  
pp. 3970-3973
Author(s):  
Reagan J. Case ◽  
Kai Duan ◽  
Thuraichamy G. Suntharavadivel

As a part of a large research program aiming at the cementitious materials containing recycled materials at Central Queensland University – Australia, the current paper presents the preliminary results of a study on the effects of fly ash, which is used to replace cement in concrete, on the concrete compressive strength. For this purpose, systematic experiments have been carried out to investigate the influences of fly ash ratio and age. The compressive strength of concrete specimens with replacement ratios of 15%, 30% and 45%, and aged 7 and 28 days are measured and are compared with those of the concrete specimens without fly ash at the same ages. The results demonstrate that the strength of fly ash containing concrete improves more slowly but more strongly with aging, than their fly ash free counterparts, and an optimum fly ash replacement ratio exists where the maximum compressive strength of fly ash containing concrete can be achieved, and the maximum strength for the specimens aged 28 days and above is higher that of fly ash free concrete. Furthermore, the observation strength behaviours are analysed and discussed in terms of the influences of fly ash on interface reactions and interface bonding strength.


2013 ◽  
Vol 639-640 ◽  
pp. 368-371
Author(s):  
Qing Huang ◽  
Jian Yin ◽  
Wei Min Song

The effects of mineral admixtures and superplasticizer on reducing the hydration heat of cementitious material were evaluated in this study, and the heat evolution rate and hydration heat were tested as the two parameters to evaluate the effect of improvement. The results showed that the cement partly-replaced with fly ash (FA) and slag (SG) could significantly decrease the release rate of hydration heat on the early stage of hydration, and lower the peak value of the heat evolution rate. The superplasticizer (TJ-Ⅲ) could reduce the hydration heat mainly on the early stage of hydration, and extended the induction period. In comparison with slag, the fly ash had more active effects on reducing the peak value and release rate of hydration heat.


2019 ◽  
Vol 9 (9) ◽  
pp. 1049-1054
Author(s):  
Yunxia Lun ◽  
Fangfang Zheng

This study is aimed at exploring the effect of steel slag powder (SSP), fly ash (FA), and silica fume (SF) on the mechanical properties and durability of cement mortar. SSP, SF, and FA were used as partial replacement of the Ordinary Portland cement (OPC). It was showed that the compressive and bending strength of steel slag powder were slightly lower than that of OPC. An increase in the SSP content caused a decrease in strength. However, the growth rate of compressive strength of SSP2 (20% replacement by the weight of OPC) at the curing ages of 90 days was about 8% higher than that of OPC, and the durability of SSP2 was better than that of OPC. The combination of mineral admixtures improved the later strength, water impermeability, and sulfate resistance compared with OPC and SSP2. The compressive strength of SSPFA (SSP and SF) at 90 days reached 70.3 MPa. The results of X-ray diffraction patterns and scanning electron microscopy indicated that SSP played a synergistic role with FA or SF to improve the performance of cement mortar.


2013 ◽  
Vol 357-360 ◽  
pp. 1200-1205
Author(s):  
Chun Hui Yu ◽  
Gu Hua Li ◽  
Jin Liang Gao ◽  
Qun Wei ◽  
Da Zhen Xu

Compared with natural sand, manufactured-sand is of small porosity, poor grain shape and graded, which impacts mixes workability and the properties after hardening. In Concrete, playing the role of retaining moisture water is mainly powder, including cement, powder in the sand and fly ash etc. The amount of powder has a great influence on the properties of concrete, especially on its workability. This paper mainly discusses the influence of amount of cement, cementitious materials, fly ash, water-cement ratio and other factors on the workability, compressive strength and shrinkage of concrete. The experiments show that, in the case of the low amount of cement, workability of the manufactured-sand concrete mixture, compressive strength and shrinkage deformation of test block all meet the actual requirements.


2009 ◽  
Vol 405-406 ◽  
pp. 256-261
Author(s):  
Hua Quan Yang ◽  
Shi Hua Zhou ◽  
Yun Dong

The paper investigates the volume shrinkage of different cementitious materials. The results indicates the type and fineness of cement have significant effect on the volume stability of hardened paste, namely, the concrete with higher fineness cement has worse volume stability. The addition of mineral admixtures makes the volume stability of cementitious materials become complex. The mineral admixtures of high quality can reduce the shrinkage of hardened paste, and the duality system of cement incorporating fly ash have better volume stability than the ternary system of cement incorporating fly ash and slag powder.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1861 ◽  
Author(s):  
Liming Zhang ◽  
Songbai Liu ◽  
Dongsheng Song

This study investigates the effect of micr-oaggregate filling with copper tailing on the pore structure of cement paste containing copper tailing (CPCT). The particle size of the CPCT and the pore structure of CPCT were analyzed by laser particle size analysis and mercury instruction porosimetry (MIP). Results showed that at the early stage of curing time, with increasing copper tailing content, the compressive strength of cement mortar with copper tailing (CMCT) was lower, and the porosity and pore diameter of CPCT were higher and greater; with the extension of curing age, when the content of copper tailing was less than 30%, the compressive strength of CMCT and the porosity of CPCT changed slightly with the increase of the content of copper tailing. However, the maximum hole diameter of CPCT decreased gradually (a curing age between 7 d and 365 d under standard conditions). Scanning electron microscopy analysis showed that at the early stage of cement hydration in the CPCT, the copper tailing did not fill the pores in CPCT well, while in the later stage of cement hydration, the microaggregates of copper tailing filled the pores well and closely combined with the surrounding hydration products. In the later stage of cement hydration, the microaggregate filling of copper tailing was primarily responsible for the strength increase of the CMCT.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wei Yuan ◽  
Renfeng Yang ◽  
Jianyou Yu ◽  
Xiujie Han

This article aims to improve the accuracy and predictability of rebound method in compressive strength evaluation of concrete members of the Yanchong Expressway, which is an important traffic guarantee project for the 2022 Winter Olympics Games in Zhangjiakou city, Hebei Province, China. For this purpose, concrete specimens were prepared by the mixing ratios of C35, C40, and C50. First of all, the paper investigated the effects of curing age, types, and dosage of mineral admixtures (fly ash and slag) on concrete rebound number and compressive strength. Then, the special testing strength curves of 7 d and 90 d curing age were proposed. The results showed that the average relative errors of the special testing strength curves were reduced by 35.99% and 20.26% respectively, compared with the national testing strength curve. Fly ash and slag were beneficial to the growth of concrete rebound numbers but cannot contribute to the growth of concrete compressive strength (except for fly ash single-mixed with 15% dosage). The present results can provide a significant reference for the compressive strength evaluation and later maintenance of concrete members of the Yanchong Expressway or other projects with tight construction period in this area.


2020 ◽  
Vol 10 (10) ◽  
pp. 3572
Author(s):  
Jian Zheng ◽  
Guohua Liu

Concrete and cement have been widely used in past decades as a result of urbanization. More and more supplementary cementitious materials are adopted in concrete because its production complements environmental conservation. The influence of slag, fly ash, limestone, etc., on compressive strength of concrete is of interest to engineers worldwide. Many previous studies were specific to certain engineering or certain experiments that could not reveal the nature of the influence of the three supplementary cementitious materials on concrete’s compressive strength. The research concerning the influence of two or more kinds of supplementary cementitious materials on concrete’s compressive strength is still unclear. Moreover, there is a lack of clarity on the optimum proportion of one or more certain cementitious materials in practical engineering or experiments. To overcome these problems, this study adopts the concrete compressive strength development over time (CCSDOT) model, which generates an explicit formula to conduct quantitative research based on extensive data. The CCSDOT model performs well in fitting the compressive strength development of concrete containing cement, slag, fly ash, and limestone flour. The results reveal the nature of the influence of the three supplementary cementitious materials on concrete’s compressive strength through the parameter analysis in the model. Two application cases are analyzed concerning the selection of the three supplementary cementitious materials and design of concrete mix proportion for practical engineering. It is concluded that the CCSDOT model and the method in this study can possibly provide guidance on both the selection of supplementary cementitious materials and the design of optimal concrete mix proportion for practical engineering. Therefore, the study is highly essential and useful.


2012 ◽  
Vol 174-177 ◽  
pp. 1173-1176
Author(s):  
Rui Ma ◽  
Xin Cheng ◽  
Chen Chen Gong ◽  
Shou De Wang ◽  
Ling Chao Lu

Effects of superfine slag powder, fly ash and ultra-fine CaCO3 on compressive strength of sulphoaluminate cement were investigated. Cement hydration products were analyzed by using scanning electron microscopy (SEM). The results show that different fineness and additions of mineral admixture differ in compressive strength. When the amount of superfine slag powder, fly ash and ultra-fine CaCO3 are added by 10%, 10% and 3% (by weight), the compressive strength of the hardened paste of sulphoaluminate cement is highest, respectively. Meanwhile, it is concluded that the additions of superfine slag powder and ultra-fine CaCO3 facilitates hydration at early ages, while fly ash could accelerate hydration at later ages.


Sign in / Sign up

Export Citation Format

Share Document