scholarly journals Optimization Design of a 2.5 Stage Highly Loaded Axial Compressor with a Bezier Surface Modeling Method

2020 ◽  
Vol 10 (11) ◽  
pp. 3860
Author(s):  
Song Huang ◽  
Jinxin Cheng ◽  
Chengwu Yang ◽  
Chuangxin Zhou ◽  
Shengfeng Zhao ◽  
...  

Due to the complexity of the internal flow field of compressors, the aerodynamic design and optimization of a highly loaded axial compressor with high performance still have three problems, which are rich engineering design experience, high dimensions, and time-consuming calculations. To overcome these three problems, this paper takes an engineering-designed 2.5-stage highly loaded axial flow compressor as an example to introduce the design process and the adopted design philosophies. Then, this paper verifies the numerical method of computational fluid dynamics. A new Bezier surface modeling method for the entire suction surface and pressure surface of blades is developed, and the multi-island genetic algorithm is directly used for further optimization. Only 32 optimization variables are used to optimize the rotors and stators of the compressor, which greatly overcome the problem of high dimensions, time-consuming calculations, and smooth blade surfaces. After optimization, compared with the original compressor, the peak efficiency is still improved by 0.12%, and the stall margin is increased by 2.69%. The increase in peak efficiency is mainly due to the rotors. Compared with the original compressor, for the second-stage rotor, the adiabatic efficiency is improved by about 0.4%, which is mainly due to the decreases of total pressure losses in the range of above 30% of the span height and 10%–30% of the chord length. Besides, for the original compressor, due to deterioration of the flow field near the tip region of the second-stage stator, the large low-speed region eventually evolves from corner separation into corner stall with three-dimensional space spiral backflow. For the optimized compressor, the main reason for the increased stall margin is that the flow field of the second-stage stator with a span height above 50% is improved, and the separation area and three-dimensional space spiral backflow are reduced.

Author(s):  
Chengwu Yang ◽  
Xingen Lu ◽  
Yanfeng Zhang ◽  
Shengfeng Zhao ◽  
Junqiang Zhu

The clearance size of cantilevered stators affects the performance and stability of axial compressors significantly. Numerical calculations were carried out using the commercial software FINE/Turbo for a 2.5-stage highly loaded transonic axial compressor, which is of cantilevered stator for the first stage, at varying hub clearance sizes. The aim of this work is to improve understanding of the impact mechanism of hub clearance on the performance and the flow field in high flow turning conditions. The performance of the front stage and the compressor with different hub clearance sizes of the first stator has been analyzed firstly. Results show that the efficiency decreases as clearance size varies from 0 to 3% of hub chordlength, but the operating range has been extended. For the first stage, the efficiency decreases about 0.5% and the stall margin is extended. The following analysis of detailed flow field in the first stator shows that the clearance leakage flow and elimination of hub corner separation is responsible for the increasing loss and stall margin extending respectively. The effects of hub clearance on the downstream rotor have been discussed lastly. It indicates that the loss of the rotor increases and the flow deteriorates due to increasing of clearance size and hence the leakage mass flow rate, which mainly results from the interaction of upstream leakage flow with the passage flow near pressure surface. The affected region of rotor passage flow field expands in spanwise and streamwise direction as clearance size grows. The hub clearance leakage flow moves upward in span as it flows toward downstream.


Author(s):  
Shraman Goswami ◽  
M. Govardhan

Abstract High performance and increased operating range of an axial compressor is obtained by employing three-dimensional design features, such as sweep, as well as shroud casing treatments, such as circumferential casing grooves. A number of different rotor blades with different amounts of sweeps and different sweep starting spans are studied at design speed. Different swept rotors, including zero sweep, are derived from Rotor37 rotor geometry. In the current study the best performing rotor with sweep is analyzed at part speed. The analyses were done for baseline rotor, devoid of any sweep, and with and without circumferential casing grooves. A detailed flow field investigation and performance comparison is presented to understand the changes in flow field at part speed. It is found that that at 100% design speed, stall margin improvement is achived by both sweep and casing grooves, but at 90% speed improvement in stall margin due to sacing groove is very minimal over and above the gain due to sweep. It is also noticed that due to reduced shock loss efficiency is higher at 90% speed than at 100% speed.


2012 ◽  
Vol 203 ◽  
pp. 514-518
Author(s):  
Shi Ping Fan ◽  
Jian Ming Yang ◽  
Min Quan Feng ◽  
Bang Min Zheng

In view of the complexity of the conventional simulation calculation method of three-dimensional flow field for the reservoir, and to analysis of the change of the reservoir’s flow field in flood period, in this paper, based on the unsteady flow numerical calculation, the simulation method for three-dimensional space flow velocity field of the reservoir in flood period was studied and applied to the Wenyuhe Reservoir. First refining the actual extraction of grid, and then having an unsteady flow numerical calculation for the reservoir, finally through layering and stripping the grid, three-dimensional space flow velocity field the reservoir on the condition of unsteady flow has been studied. The results showed that the reservoir velocity along the flow direction is becoming smaller, and surface velocity is fast; with the flow increase gradually, the unsteady flow has a great effect on the flow field of the reservoir’s concave bank. The grid can at will encryption, so the calculation precision can be effectively controlled and the process of simulation is easy to be programmed. The research results can simplify the complexity of the reservoir for three-dimensional numerical simulation, and up to providing theoretical support for reservoir flood control.


Author(s):  
Mingming Zhang ◽  
Anping Hou

This paper applies a numerical approach to improve the understanding of reaction to various inflow conditions for the compressor system and the mechanism of stall inception under rotating inflow distortions. Full annulus, unsteady, three-dimensional computational fluid dynamics has been used to simulate an axial low-speed compressor operating under rotating distorted inflow conditions. The development of the flow through the rotor is then explained in terms of the redistribution of the flow field and the process of stall inception. The results suggest that the increased flow incidence close to the tip region under co-rotating inflow distortion plays an important role on the stall inception process. The presence of a strong modal wave is observed under co-rotating inflow distortions. This leads to a significant impact on the loss of stall margin, as compared with other distorted inflow conditions. There is a significant peak in the flow coefficient at stall for co-rotating inlet distortion. It can be interpreted as a resonant behavior of the compressor under a strong interaction between the flow field and inlet distortion. It indicates that the stall inception is triggered by the perturbation of the rotating distorted inflow through the long length scale disturbances.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2019 ◽  
Author(s):  
Jumpei Morimoto ◽  
Yasuhiro Fukuda ◽  
Takumu Watanabe ◽  
Daisuke Kuroda ◽  
Kouhei Tsumoto ◽  
...  

<div> <div> <div> <p>“Peptoids” was proposed, over decades ago, as a term describing analogs of peptides that exhibit better physicochemical and pharmacokinetic properties than peptides. Oligo-(N-substituted glycines) (oligo-NSG) was previously proposed as a peptoid due to its high proteolytic resistance and membrane permeability. However, oligo-NSG is conformationally flexible and is difficult to achieve a defined shape in water. This conformational flexibility is severely limiting biological application of oligo-NSG. Here, we propose oligo-(N-substituted alanines) (oligo-NSA) as a new peptoid that forms a defined shape in water. A synthetic method established in this study enabled the first isolation and conformational study of optically pure oligo-NSA. Computational simulations, crystallographic studies and spectroscopic analysis demonstrated the well-defined extended shape of oligo-NSA realized by backbone steric effects. The new class of peptoid achieves the constrained conformation without any assistance of N-substituents and serves as an ideal scaffold for displaying functional groups in well-defined three-dimensional space, which leads to effective biomolecular recognition. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document