scholarly journals One-Part Alkali-Activated Pastes and Mortars Prepared with Metakaolin and Biomass Ash

2020 ◽  
Vol 10 (16) ◽  
pp. 5610
Author(s):  
Alessandra Mobili ◽  
Francesca Tittarelli ◽  
Hubert Rahier

Common alkali-activated materials (AAMs) are usually manufactured with highly alkaline solutions. However, alkaline solutions are dangerous for workers who must wear gloves, masks, and glasses when handling them. This issue makes common (or two-part) AAMs not user-friendly and problematic for bulk production if no safety procedures are followed. In this paper, the possibility of manufacturing alkali-activated pastes and mortars without alkaline solution is investigated. These innovative one-part AAMs have been prepared with metakaolin as the aluminosilicate precursor, potassium-rich biomass ash as the alkaline activator, and water. AAMs have been prepared by varying the K/Al molar ratio: pastes have been studied in terms of reaction kinetics, through isothermal calorimetry, and mortars have been tested in terms of mechanical compressive strength. Results show that the K/Al molar ratio governs both the reaction kinetics and the mechanical strength of these innovative materials. The highest compressive strength is obtained when the K/Al ratio is equal to 2.5 and the water/solid ratio is equal to 0.49. If biomass ash is heated at 700 °C to decompose the calcium carbonate, its reactivity and the final compressive strength increase.

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 360
Author(s):  
Pauls P. Argalis ◽  
Laura Vitola ◽  
Diana Bajare ◽  
Kristine Vegere

A major problem in the field of adsorbents is that binders (kaolin clay, bentonite) introduced to bind zeolites and ensure the needed mechanical strength, are not able to sorb gases like CO2 and N2, and decrease the overall adsorption capacity. To solve this problem, one of the pathways is to introduce a binder able to sorb such gases. Thus, in this study, the physical and mechanical properties of a novel binder based on metakaolin and its composite with zeolite 4A in the granular form were studied. Metakaolin was used as a precursor for alkali-activated binder, which was synthesized using an 8M NaOH activation solution. Raw materials were characterized using granulometry, X-ray diffraction (XRD), and differential thermal analysis (DTA); and final products were characterized using density measurements, a compressive strength test, XRD, Brunauer–Emmett–Teller (BET) analysis, and scanning electron microscopy (SEM). Alkali-activated metakaolin was found to be efficient as a binding material when data for morphological properties were analyzed. A relationship was observed—by increasing the liquid-to-solid ratio (L/S), compressive strength decreased. Zeolite granule attrition was higher than expected: 2.42% and 4.55% for ZG-0.8, 3.64% and 5.76% for ZG-1.0, and 2.73% and 4.85% for ZG-1.2, measured at 4 and 5 atmospheres, respectively.


2018 ◽  
Vol 45 (12) ◽  
pp. 1073-1083 ◽  
Author(s):  
Hamideh Mehdizadeh ◽  
Ebrahim Najafi Kani

In this study, a statistical experimental design based on response surface methodology (RSM) has been applied to predict and optimize the compressive strength of alkali-activated phosphorus slag in different ages (3, 7, and 28 days). For this purpose, the binder samples were prepared with different molar ratios of SiO2/Na2O (S/N), Na2O/Al2O3(Na/Al), and H2O/Al2O3(H/Al) as alkali activator. Results showed that S/N molar ratio plays its role in early ages of curing and Na/Al molar ratio, and showed its significant effect on 7 and 28 days of compressive strength. H/Al molar ratio had the most significant effect on compressive strength compared to the other parameters. The derived RSM models were statistically adequate and could be used to predict the compressive strength. The optimum chemical composition of activator to obtain the highest compressive strength was achieved as 0.39, 1.34, and 30 for S/N, Na/Al, and H/Al molar ratios, respectively, with compressive strength of 30, 65, and 100 MPa at 3, 7, and 28 days of curing.


Author(s):  
Sajid Khan Afridi ◽  
Vanissorn Vimonsatit

Alkali activated pozzolan are known low carbon cementitious binders which can be used to replace cement. The material is also known as geopolymer because of its three dimensional polymeric chain and ring like structure consisting silica and alumina. A common type of pozzolan used is fly ash because of its rich silica content; therefore the term alkali activated fly-ash based binders is adopted. Despite much research and development of this material, there is no specific standard for design mix proportion. This research used the Taguchi’s design of experiment method to determine the optimum mix proportion of alkali activated fly ash based cement paste and mortar. Four factors were considered in the tests, silica fume, sand to cementitious ratio, liquid to solid ratio, and percentage of superplasticiser. Tests were conducted on the 9 batches of alkali activated fly-ash based paste and mortar samples to determine the compressive strength under ambient condition. Tests were also conducted to determine the residual strength of the samples after exposed to elevated temperatures. ANOVA analysis of the test results revealed the main factors contribution on the tested properties and led to the determination of the optimum design proportion of the factors considered in these tests.


Author(s):  
Hyuk Lee ◽  
Vanissorn Vimonsatit

This paper presents the mechanical properties of fly ash-based alkali-activated cement (AAC). A statistical analysis method was used to determine the effect of mix proportion parameters on the dry density and compressive strength of fly ash-based AAC pastes and mortars. For that purpose, sample mixtures were designed according to Taguchi’s experimental design method, i.e., in a L9 orthogonal array. Four factors were selected: “silica fume content” (SF), “sand to solid ratio” (s/c), “liquid to solid ratio” (l/s), and “superplasticiser content” (SP). The experimental results were analysed by using signal to noise for quality control of each mixture, and analysis of variance (ANOVA) was used to determine the significant effect on the compressive strength of fly ash-based AAC. Furthermore, a regression-analysis method was used to predict the compressive strength according to the variation of the four factors. Results indicated that silica fume is the most influencing parameter on compressive strength, which could be decreased by superplasticiser and l/s ratio. There is no significant effect of sand-to-cementitious ratio on compressive strength of fly ash-based AAC. The dry density decreases as the sand-to-cementitious ratio is decreased. The increasing l/s ratio and superplasticiser dosage could further decrease the dry density of fly ash-based AAC.


Author(s):  
Yanhong Mao ◽  
Faheem Muhammad ◽  
Lin Yu ◽  
Ming Xia ◽  
Xiao Huang ◽  
...  

The proper disposal of Lead-Zinc Smelting Slag (LZSS) having toxic metals is a great challenge for a sustainable environment. In the present study, this challenge was overcome by its solidification/stabilization through alkali-activated cementitious material i.e., Blast Furnace Slag (BFS). The different parameters (water glass modulus, liquid-solid ratio and curing temperature) regarding strength development were optimized through single factor and orthogonal experiments. The LZSS was solidified in samples that had the highest compressive strength (after factor optimization) synthesized with (AASB) and without (AAS) bentonite as an adsorbent material. The results indicated that the highest compressive strength (AAS = 92.89MPa and AASB = 94.57MPa) was observed in samples which were prepared by using a water glass modulus of 1.4, liquid-solid ratio of 0.26 and a curing temperature of 25 °C. The leaching concentrations of Pb and Zn in both methods (sulfuric and nitric acid, and TCLP) had not exceeded the toxicity limits up to 70% addition of LZSS due to a higher compressive strength (>60 MPa) of AAS and AASB samples. While, leaching concentrations in AASB samples were lower than AAS. Conclusively, it was found that the solidification effect depends upon the composition of binder material, type of leaching extractant, nature and concentration of heavy metals in waste. The XRD, FTIR and SEM analyses confirmed that the solidification mechanism was carried out by both physical encapsulation and chemical fixation (dissolved into a crystal structure). Additionally, bentonite as an auxiliary additive significantly improved the solidification/stabilization of LZSS in AASB by enhancing the chemical adsorption capacity of heavy metals.


2020 ◽  
Vol 56 (1) ◽  
pp. 513-527
Author(s):  
Claudio Finocchiaro ◽  
Germana Barone ◽  
Paolo Mazzoleni ◽  
Caterina Sgarlata ◽  
Isabella Lancellotti ◽  
...  

Abstract The investigation on the reticulation degree of volcanic alkali-activated materials, AAMs, were experimentally determined in terms of chemico-physical properties: weight loss after leaching test in water, ionic conductivity and pH of the leachate and compressive strength. Artificial neural network (ANN) was successfully applied to predict the chemical stability of volcanic alkali-activated materials. Nine input data per each chemico-physical parameter were used to train each ANN. The training series of specific volcanic precursors were tested also for the other one. Excellent correlations between experimental and calculated data of the same precursor type were found reaching values around one. The evidence of strong effect on chemical stability of the alkaline activator SiO2/Na2O molar ratio as well as the Si/Al ratio of precursor mixtures on the reticulation degree of ghiara-based formulation with respect to volcanic ash-based materials is presented. It must be noted that such effect was much less pronounced on the compressive strength values, appearing more insensitive the molar ratio of the alkaline activator. The comparison of the ANN results with more conventional multiple linear regression (MLR) testifies the higher prediction performance of the first method. MLRs results, less significant, are useful to confirm the powerful capacity of ANNs to identify the more suitable formulation using a set of experimental AAMs. This study, as few others, on the correlation between chemical stability and compressive strength of AAMs provide a great contribution in the direction of durability and in-life mechanical performance of these class of materials. Graphic abstract


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 383 ◽  
Author(s):  
R. A. Gado ◽  
Marek Hebda ◽  
Michal Łach ◽  
Janusz Mikuła

This study was conducted to investigate the influence of various reaction conditions, namely the silica modulus SiO2/Na2O, H2O/Na2O molar ratio, and liquid/solid ratio on the geopolymerization reaction of the waste fired clay bricks (Grog). The starting raw material and the generated geopolymer specimens produced by different geopolymerization reaction conditions have been characterized using different techniques: X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and thermal analysis. Furthermore, physico–mechanical characterization has been carried out through the determination of bulk density, porosity, water absorption, and compressive strength for each sample at interval curing times of up to 28 days. The results indicated that the geopolymerization system of the waste fired clay bricks is influenced by the investigated reaction conditions at room temperature. The compressive strength of the geopolymer sample produced at optimum conditions increased significantly by up to 37.5 MPa, in comparison with 4.5 MPa for other conditions. Finally, an optimum recommendation and useful conclusions concerning the recycling and utilization of this waste material through the geopolymerization process are made for compatibility with construction applications.


2009 ◽  
Vol 417-418 ◽  
pp. 721-724 ◽  
Author(s):  
Kyung Taek Koh ◽  
Su Tae Kang ◽  
Gum Sung Ryu ◽  
Hyun Jin Kang ◽  
Jang Hwa Lee

This study investigates the effects of alkaline activators and curing method on the compressive strength of mortar for the development of cementless alkali-activated concrete using 100% of fly ash as binder. Results reveal that the compressive strength improved according to the increase of the molar concentration of NaOH. In addition, molar ratio Na2O to SiO2 of 1.12 activated the reaction of fly ash with Si and Al constituents and resulted in the most remarkable development of strength. In the case of mortar requiring high strength at early age, higher curing temperatures appeared to be advantages. Curing at 60°C during 48 hours is recommended for requiring high strength at age 28days. Moreover, performing atmospheric curing after high temperature curing appeared to be more effective for the development of strength than water curing. Based on these results, it has been analyzed that alkaline activators fabricated with proportions of 1:1 of 9M NaOH and sodium silicate should be used and that atmospheric curing should be performed after curing at 60°C during 48 hours to produce high strength alkali-activated mortar exhibiting compressive strength of 70MPa at age 28 days.


2011 ◽  
Vol 250-253 ◽  
pp. 1147-1152 ◽  
Author(s):  
Xiao Jun Jiang ◽  
Yan Yun ◽  
Zhi Hua Hu

The feasibility of manufacturing non-autoclaved aerated concrete using alkali activated phosphorus slag as a cementitious material was investigated in this paper. Liquid sodium silicate with various modules (the molar ratio between SiO2 and Na2O) was used as alkali activator and a part of phosphorus slag was replaced with fly ash which was used to control the setting time of aerated concrete. The influences of the fly ash, curing procedure, modulus of sodium silicate solution and concentration of alkalis on the compressive strength and bulk density of non-autoclaved aerated concrete have been studied. Moreover, the types of the hydration products were investigated using XRD and SEM. The results indicate that: the compressive strength of aerated concrete was influenced by concentration of alkalis obviously. The compressive strength of 11.9MPa and the bulk density of 806kg/m3 were obtained with an activator of 1.2 modulus of sodium silicate and 6% concentration of alkalis under the circumstance of 60°C curing for 28 days.


2020 ◽  
Vol 29 (1) ◽  
pp. 106-113 ◽  
Author(s):  
Adeyemi Adesina

AbstractThe use of sodium carbonate as an alkali activator for slag to produce alkali-activated slag is promising due to its sustainable, economic and user-friendly properties. However, the lower early age performance of composites made with such binder has limited its use especially in applications where higher early age is required. Hence, in order to propel the application of this sustainable binder, it is imperative to find ways in which the early age performance can be enhanced without having a detrimental effect on later age performance. One of the effective and sustainable ways to enhance the early age strength of sodium carbonate activated slag is by incorporation of various additives as partial replacement of sodium carbonate on/and slag. In order to propel more application of sodium carbonate slag for various applications, this current study was undertaken. In this paper, an overview of the types of various additives that can be used to enhance the early age compressive strength of sodium carbonate activated slag composites was discussed. The mechanism and dosage of each of the additives were briefly discussed alongside the limitation and advantages of the additives. Findings from this overview showed that the early age compressive strength of sodium carbonate activated slag can be enhanced with the use of additives such as calcium oxide, calcium hydroxide, Portland cement, sodium hydroxide and sodium silicate.


Sign in / Sign up

Export Citation Format

Share Document