scholarly journals Effects of Wall Properties on Temperature-Control Effectiveness of Heating Section in a Thermosiphon Containing PCM Suspensions

2020 ◽  
Vol 10 (18) ◽  
pp. 6211
Author(s):  
Ching-Jenq Ho ◽  
Shih-Ming Lin ◽  
Rong-Horng Chen ◽  
Chi-Ming Lai

This article considers the problem of natural heat transfer in a rectangular thermosiphon to investigate the effects of wall properties (thickness and thermal conductivity) on the heat-transfer characteristics of phase-change-material (PCM) suspension flow. The following parameter ranges were investigated: dimensionless loop-wall thickness, 0–0.5; wall-to-fluid thermal-conductivity ratio, 0.1–100; modified Rayleigh number, 1010–1011; and volumetric fraction of PCM particles, 0–10%. From numerical simulations via the finite-volume approach, it was found that using a pipe with appropriate wall thickness and thermal conductivity containing PCM suspensions for the heating section of a rectangular thermosiphon can effectively control the maximal temperature.

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 572
Author(s):  
Ching-Jenq Ho ◽  
Shih-Ming Lin ◽  
Chi-Ming Lai

This study explores the effects of pipe wall properties (thermal conductivity k and wall thickness tw) on the heat transfer performance of a rectangular thermosyphon with a phase change material (PCM) suspension and a geometric configuration (aspect ratio = 1; dimensionless heating section length = 0.8; dimensionless relative elevation between the cooling and the heating sections = 2) that ensures the optimum heat transfer efficiency in the cooling section. The following parameter ranges are studied: the dimensionless loop wall thickness (0 to 0.5), wall-to-fluid thermal conductivity ratio (0.1 to 100), modified Rayleigh number (1010 to 1011), and volumetric fraction of PCM particles (0 to 10%). The results show that appropriate selection of k and tw can lead to improved heat transfer effectiveness in the cooling section of the PCM suspension-containing rectangular thermosyphon.


2019 ◽  
Vol 29 (10) ◽  
pp. 3559-3583 ◽  
Author(s):  
Ali J. Chamkha ◽  
Fatih Selimefendigil

Purpose The purpose of this study is to numerically examine the mixed convection of CuO-water nanofluid due to a rotating inner hot circular cylinder in a 3D cubic enclosure with phase change material (PCM) attached to its vertical surface. Heat transfer and fluid flow characteristics were examined for various values of pertinent parameters. Design/methodology/approach Finite element method was used in the numerical simulation. Influence of various pertinent parameters such as Rayleigh number (between 10$^5$ and 10$^6$), Hartmann number (between 0 and 100), angular rotational speed of the cylinder (between −50 and 50), solid nanoparticle volume fraction (between 0 and 0.04) and PCM parameters (height-between 0.2H and 0.8H, thermal conductivity ratio- between 0.1 and 10) on the convective heat transfer characteristics are numerically studied. Findings It was observed that local heat transfer variations along the hot surface differ significantly for the cases with and without magnetic field where three distinct hot spots of peak Nusselt number are established when magnetic field is imposed. The average Nusselt number enhancement with the nanofluid at the highest particle volume fraction is 52.85 per cent at Hartmann number of 100, whereas its value is 39.76 per cent for the case in the absence of magnetic field. When the inner cylinder rotates, flow and thermal fields are affected within the cavity. The local heat transfer variations spread over the hot surface with cylinder rotation and 16.43 per cent of reduction in the average heat transfer is obtained with counter-clockwise rotation at 100 rad/sec. An enhancement in the PCM height and a reduction in the thermal conductivity of the PCM result in average heat transfer deterioration for the 3D cavity. The amount of the reduction is 43 per cent when the PCM height is increased from 0.2H to 0.8H, whereas 19.10 per cent enhancement in the heat transfer is achieved when thermal conductivity ratio (PCM) to the base fluid is increased from 0.1 to 10. Originality/value Such configurations can be designed for convection control, and in our case, various methods are available. Some of the investigated methods can be used in applications where magnetic field already exists. Convection control study in 3D cavity gives more realistic results as compared to 2D configurations, and results of the current investigation may be used for the design, optimization and flow control of many thermal applications involving magnetic field effects.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Habibis Saleh ◽  
Ishak Hashim

Conjugate natural convection-conduction heat transfer in a square enclosure with a finite wall thickness is studied numerically in the present paper. The governing parameters considered are the Rayleigh number5×103≤Ra≤106, the wall-to-fluid thermal conductivity ratio0.5≤Kr≤10, and the ratio of wall thickness to its height0.2≤D≤0.4. The staggered grid arrangement together with MAC method was employed to solve the governing equations. It is found that the fluid flow and the heat transfer can be controlled by the thickness of the bottom wall, the thermal conductivity ratio, and the Rayleigh number.


Author(s):  
K. M. Ramadan

Abstract Numerical solutions for conjugate heat transfer of a hydro-dynamically fully developed, thermally developing, steady, incompressible laminar gas flow in a microtube with uniform wall heat flux boundary condition are presented. The mathematical model takes into account effects of rarefaction, viscous dissipation, flow work, shear work, and axial conduction in both the wall and the fluid. The effect of the tube wall thickness, the wall-to-fluid thermal conductivity ratio, as well as other factors on heat transfer parameters is investigated, and comparisons with the case of zero wall thickness are presented as appropriate. The results illustrate the significance of heat conduction in the tube wall on convective heat transfer and disclose the significant deviation from those with no conjugated effects. Increasing the wall thickness lowers the local Nusselt number. Increasing the wall-to-fluid thermal conductivity ratio also results in lower Nusselt number. In relatively long and thick microtubes with high wall-to-fluid thermal conductivity ratio, the local Nusselt number exhibits minimum values in the entrance regions and at the end sections due to axial conduction effects. The analysis presented also demonstrate the significance of rarefaction, shear work, axial conduction, as well as the combined viscous dissipation and flow work effects on heat transfer parameters in a microtube gas flow. The combined flow work and viscous dissipation effects on heat transfer parameters are significant and result in a reduction in the Nusselt number. The shear work lowers the Nusselt number when heat is added to the fluid.


Author(s):  
Ayushman Singh ◽  
Srikanth Rangarajan ◽  
Leila Choobineh ◽  
Bahgat Sammakia

Abstract This work presents an approach to optimally designing a composite with thermal conductivity enhancers (TCEs) infiltrated with phase change material (PCM) based on figure of merit (FOM) for thermal management of portable electronic devices. The FOM defines the balance between effective thermal conductivity and energy storage capacity. In present study, TCEs are in the form of a honeycomb structure. TCEs are often used in conjunction with PCM to enhance the conductivity of the composite medium. Under constrained composite volume, the higher volume fraction of TCEs improves the effective thermal conductivity of the composite, while it reduces the amount of latent heat storage simultaneously. The present work arrives at the optimal design of composite for electronic cooling by maximizing the FOM to resolve the stated trade-off. In this study, the total volume of the composite and the interfacial heat transfer area between the PCM and TCE are constrained for all design points. A benchmarked two-dimensional direct CFD model was employed to investigate the thermal performance of the PCM and TCE composite. Furthermore, assuming conduction-dominated heat transfer in the composite, a simplified effective numerical model that solves the single energy equation with the effective properties of the PCM and TCE has been developed. The effective thermal conductivity of the composite is obtained by minimizing the error between the transient temperature gradient of direct and simplified model by iteratively varying the effective thermal conductivity. The FOM is maximized to find the optimal volume fraction for the present design.


Author(s):  
Peixin Ye ◽  
Dinggen Li ◽  
Zihao Yu ◽  
Haifeng Zhang

In this paper, a modified lattice Boltzmann model that incorporates the effect of heat capacity is adopted to study the effects of a centered conducting body on natural convection of non-Newtonian fluid in a square cavity with time-periodic temperature distribution. The effects of power-law index, Rayleigh number, heat capacity ratio, thermal conductivity ratio, body size, temperature pulsating period and the temperature pulsating amplitude on fluid flow and heat transfer are analyzed in detail. The results showed that the increase of Rayleigh number and thermal conductivity ratio as well as the decrease of power-law index can strengthen both transient and global heat transfer, while the increase of heat capacitance of fluid to the solid wall can only enhance the transient heat transfer, and has little effect on the overall heat transfer. Further, the increase of body size will reduce both the transient heat transfer ratio and the overall heat transfer ratio. In addition, the decrease of temperature pulsating period can enhance the transient heat transfer, but it will slightly weaken the overall heat transfer. Finally, the results show that both the transient and the overall heat transfer ratio are increased with the increase of temperature pulsating amplitude.


2011 ◽  
Vol 312-315 ◽  
pp. 33-38
Author(s):  
M. Abkar ◽  
P. Forooghi ◽  
A. Abbassi

In this paper, forced convection in a channel lined with a porous layer is investigated. The main goal is to assess the effect of local thermal non-equilibrium condition on overall heat transfer in the channel. The effects of thermal conductivity of solid and thickness of porous layer are also studied. Flow assumed to be laminar and fully developed. The Brinkman-Forchheimer model for flow as well as the two equation energy model is used. The results showed that when the problem tends to local thermal equilibrium condition, heat transfer is enhanced due to heat conduction through solid phase. Another factor, which can facilitate the heat transfer, is the increase of the thermal conductivity of solid material. This trend is sensitive to the thickness of porous layer and modified Biot number, which is a measure (criterion) of local fluid to solid heat transfer. As thickness and modified Biot number increase, the Nusselt number becomes more sensitive to the thermal conductivity ratio.


Author(s):  
Abderrahim Bourouis ◽  
Abdeslam Omara ◽  
Said Abboudi

Purpose – The purpose of this paper is to provide a numerical study of conjugate heat transfer by mixed convection and conduction in a lid-driven enclosure with thick vertical porous layer. The effect of the relevant parameters: Richardson number (Ri=0.1, 1, 10) and thermal conductivity ratio (Rk=0.1, 1, 10, 100) are investigated. Design/methodology/approach – The studied system is a two dimensional lid-driven enclosure with thick vertical porous layer. The left vertical wall of the enclosure is allowed to move in its own plane at a constant velocity. The enclosure is heated from the right vertical wall isothermally. The left and the right vertical walls are isothermal but temperature of the outside of the right vertical wall is higher than that of the left vertical wall. Horizontal walls are insulated. The governing equations are solved by finite volume method and the SIMPLE algorithm. Findings – From the finding results, it is observed that: for the two studied cases, heat transfer rate along the hot wall is a decreasing function of thermal conductivity ratio irrespective of Richardson numbers contrary to the heat transfer rate along the fluid-porous layer interface which is an increasing function of thermal conductivity ratio. At forced convection dominant regime, the difference between heat transfer rate for upward and downward moving wall is insensitive to the thermal conductivity ratio. For downward moving wall, average Nusselt number is higher than that of upward moving wall. Practical implications – Some applications: building applications, furnace design, nuclear reactors, air solar collectors. Originality/value – From the bibliographic work and the authors’ knowledge, the conjugate mixed convection in lid-driven partially porous enclosures has not yet been investigated which motivates the present work that represent a continuation of the preceding investigations.


CFD Letters ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 25-35
Author(s):  
Ghassan Nasif ◽  
Yasser El-Okda

A computational fluid dynamics (CFD) investigation to determine the conjugate heat transfer (CHT) effect on the stagnation and local thermal characteristics due to an impinging process has been carried out in this study using STAR-CCM+ - Siemens PLM commercial code. The transient Navier-Stokes’s equations are numerically solved using a finite volume approach with k-ω SST eddy viscosity as the turbulence model. A fully developed circular air jet with different Reynolds numbers, impinging vertically onto a heated flat disc with different metals, thicknesses, and boundary heat fluxes are employed in the current study to examine the thermal characteristics and provide an enhanced picture for the convection mechanism that used in jet cooling technology. It is found that the thermal characteristics are influenced by the thermal conductivity and thickness of the target upon using air as a cooling jet. The CHT process enhances the local convective heat transfer at the fluid-solid interface due to the variation in transverse and axial conductive heat transfer inside the metal up to a certain redial extent from the stagnation region compared to the process with no CHT. The extent of the radial enhancement depends on the thermal conductivity of the metal. For a given thermal conductivity, the CHT process acts to increase the temperature and convective heat flux of the stagnation region as the metal thickness increases.


Sign in / Sign up

Export Citation Format

Share Document