scholarly journals Enhancement of Visible-Light Photocatalytic Efficiency of TiO2 Nanopowder by Anatase/Rutile Dual Phase Formation

2020 ◽  
Vol 10 (18) ◽  
pp. 6353 ◽  
Author(s):  
Yi-Jia Chen ◽  
Tse-Shan Lin

Visible-light photocatalytically active titanium oxide (TiO2) nano-powder was synthesized by a flat-flame chemical vapor condensation method. The formation of TiO2 consisting of different ratios of anatase and rutile phases was controlled by two parameters: the acetylene flow rate (C2H2, 600 sccm and 800 sccm) and the acetylene/oxygen flow ratio (C2H2/O2, 1:3, 1:4, 1:5, and 1:6). The location of the photonic center was identified for visible-light absorption, which is in the anatase grains. The photonic center on the surface of anatase grains happens to be the nucleation site for rutile in an oxygen-deficient environment. The visible-light absorption could be attributed to the formation of defect levels related to the photonic center within the band gap of anatase. The major role of the mixed-phase structure of TiO2 in the enhancement of visible-light photocatalytic activity is in the enhancement of carrier separation and not of light harvest, for the powder produced in this study.

2011 ◽  
Vol 284-286 ◽  
pp. 734-737 ◽  
Author(s):  
Pei Song Tang ◽  
Hai Feng Chen ◽  
Feng Cao ◽  
Guo Xiang Pan ◽  
Kun Yan Wang

Monophasic orthorhombic InVO4 was synthesized using InCl3 and NH4VO3 as starting materials by a hydrothermal approach. The as-prepared InVO4 product was characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-visible diffuse reflectance spectroscopy (DRS). It was found that the as-prepared InVO4 shows strong visible-light absorption with absorption onset of 515 nm, indicating a narrow optical band gap of 2.4 eV. Furthermore, the as-prepared InVO4 shows high visible-light photocatalytic activity for decomposition of methyl orange, which is ascribed to the strong visible-light absorption.


RSC Advances ◽  
2016 ◽  
Vol 6 (96) ◽  
pp. 93887-93893 ◽  
Author(s):  
Feng Guo ◽  
Weilong Shi ◽  
Yi Cai ◽  
Shuwen Shao ◽  
Tao Zhang ◽  
...  

Sheet-on-sphere Ag/AgBr@InVO4 displayed excellent photocatalytic degradation of RhB, which was attributed to enhanced visible-light absorption and anti-combination of electrons/holes through it's heterostructure.


RSC Advances ◽  
2020 ◽  
Vol 10 (57) ◽  
pp. 34775-34780 ◽  
Author(s):  
Jun Li ◽  
En-Hui Wu ◽  
Jing Hou ◽  
Ping Huang ◽  
Zhong Xu ◽  
...  

Black TiO2 has attracted widespread attention due to its visible light absorption and wide range of applications.


2020 ◽  
Vol 44 (3) ◽  
pp. 1127-1137 ◽  
Author(s):  
Hao Wu ◽  
Yaoxing Huo

CN/TCAP with enhanced visible light absorption, large surface area and defect structure allow efficient separation of charge carriers.


2020 ◽  
Vol 22 (46) ◽  
pp. 27272-27279
Author(s):  
Jing Li ◽  
Huan Yuan ◽  
Qiuping Zhang ◽  
Kaiyi Luo ◽  
Yutong Liu ◽  
...  

A series of ZnO-based complex architectures including Mn-doped ZnO, Ag/ZnO and Ag-decorated Mn:ZnO nanocomposites were fabricated by a facile polymer network gel method.


RSC Advances ◽  
2016 ◽  
Vol 6 (85) ◽  
pp. 82409-82416 ◽  
Author(s):  
Ping Wu ◽  
Guoming Wang ◽  
Ruizhi Chen ◽  
Yixin Guo ◽  
Xueming Ma ◽  
...  

[KNbO3]1−x[BaNi0.5Nb0.5O3−δ]x were synthesized by Pechini sol–gel method at low temperature. Visible light photocatalytic performance of this material was evaluated.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Xiao-Xin Zou ◽  
Guo-Dong Li ◽  
Jun Zhao ◽  
Juan Su ◽  
Xiao Wei ◽  
...  

Highly porous carbon-doped TiO2(C-TiO2) has been prepared, for the first time, through a light-driven approach using crystalline titanium glycolate (TG) as the single-source precursor. Although the nonthermally prepared porous C-TiO2is amorphous, it shows a remarkable visible-light photocatalytic activity higher than that of nitrogen-doped TiO2(N-TiO2) due to its significant surface area (530 m2/g) and pore-rich structure. X-ray photoelectron, electron paramagnetic resonance, and UV-Vis diffuse reflectance spectroscopy reveal that the as-prepared porous C-TiO2photocatalyst contains Ti–O–C bonds which result in visible-light absorption of the material at wavelengths less than 550 nm. Furthermore, it is discovered that the Ti–O–C bonds in the as-prepared C-TiO2is easily transformed to coke-type species under mild thermal treatment (200°C). The resulting coke-containing porous TiO2is an even better visible-light photocatalyst, almost twice as effective as N-TiO2, because of its stronger visible-light absorption. The Ti–O–C and the coke-containing porous TiO2materials follow two different mechanisms in the visible-light photocatalysis process for degradation of methylene blue.


Sign in / Sign up

Export Citation Format

Share Document