scholarly journals Drill Bit Deformations in Rotary Drilling Systems under Large-Amplitude Stick-Slip Vibrations

2020 ◽  
Vol 10 (18) ◽  
pp. 6523 ◽  
Author(s):  
Idir Kessai ◽  
Samir Benammar ◽  
Mohamed Zinelabidine Doghmane ◽  
Kong Fah Tee

In oil and gas industry, rotary drilling systems are used for energy exploration and productions. These types of systems are composed of two main parts: mechanical and electrical parts. The electrical part is represented by rotating motor called top drive; however, the mechanical part of the system is composed of tool string with many pipes, at the bottom end of these pipes the bit is attached to cut the rock during their contact. Since the bit is in a direct contact with rock characteristic variations, it can be under risk for heavy damage. The latter is principally caused by the fact that the rock–bit interaction term is highly nonlinear and unpredictable. In literature, many mathematical models have been proposed for rock–bit interaction, but they do not reflect the dynamic of the bit under vibrations since torsional and axial vibrations are strongly coupled and synchronized with it. In industrial development, the design of drill bit has faced many improvements in order to overcome these vibrations and mitigate unpredictable phenomena. Even though, the practical use of these drill bits confirmed that there are still many failures and damages for the new designs; moreover, bits’ virtual life become shorter than before. The objective of this study is to analyze the drill bit deformations caused by the stick-slip vibration phenomenon which is characterized by high-frequency high-amplitude in rotary drilling systems. The obtained results were validated through a case study of MWD (measurement while drilling) data of well located in a Southern Algerian oil field.

2018 ◽  
Vol 148 ◽  
pp. 16005 ◽  
Author(s):  
Wei Lin ◽  
Yang Liu

Stick-slip oscillation in drill-string is a universal phenomenon in oil and gas drilling. It could lead to the wear of drill bit, even cause catastrophic failure of drill-strings and measurement equipment. Therefore, it is crucial to study drilling parameters and develop appropriate control method to suppress such oscillation. This paper studies a discrete model of the drill-string system taking into account torsional degree-of-freedom, drill-string damping, and highly nonlinear friction of rock-bit interaction. In order to suppress the stick-slip oscillation, a new proportional-derivative controller, which can maintain drill bit’s rotation at a constant speed, is developed. Numerical results are given to demonstrate its efficacy and robustness.


2020 ◽  
pp. 42-45
Author(s):  
J.A. Kerimov ◽  

The implementation of plastic details in various constructions enables to reduce the prime cost and labor intensity of machine and device manufacturing, decrease the weight of design and improve their quality and reliability at the same time. The studies were carried out with the aim of labor productivity increase and substitution of colored and black metals with plastic masses. For this purpose, the details with certain characteristics were selected for further implementation of developed technological process in oil-gas industry. The paper investigates the impact of cylinder and compression mold temperature on the quality parameters (shrinkage and hardness) of plastic details in oil-field equipment. The accessible boundaries of quality indicators of the details operated in the equipment of exploration, drilling and exploitation of oil and gas industry are studied in a wide range of mode parameters. The mathematic dependences between quality parameters (shrinkage and hardness) of the details on casting temperature are specified.


2021 ◽  
Author(s):  
Ernesto Gomez ◽  
Ebikebena Ombe ◽  
Brennan Goodkey ◽  
Rafael Carvalho

Abstract In the current oil and gas drilling industry, the modernization of rig fleets has been shifting toward high mobility, artificial intelligence, and computerized systems. Part of this shift includes a move toward automation. This paper summarizes the successful application of a fully automated workflow to drill a stand, from slips out to slips back in, in a complex drilling environment in onshore gas. Repeatable processes with adherence to plans and operating practices are a key requirement in the implementation of drilling procedures and vital for optimizing operations in a systematic way. A drilling automation solution has been deployed in two rigs enabling the automation of both pre-connection and post-connection activities as well as rotary drilling of an interval equivalent to a typical drillpipe stand (approximately 90 ft) while optimizing the rate of penetration (ROP) and managing drilling dysfunctionalities, such as stick-slip and drillstring vibrations in a consistent manner. So far, a total of nine wells have been drilled using this solution. The automation system is configured with the outputs of the drilling program, including the drilling parameters roadmap, bottomhole assembly tools, and subsurface constraints. Before drilling every stand, the driller is presented with the planned configuration and can adjust settings whenever necessary. Once a goal is specified, the system directs the rig control system to command the surface equipment (draw works, auto-driller, top drive, and pumps). Everything is undertaken in the context of a workflow that reflects standard operating procedures. This solution runs with minimal intervention from the driller and each workflow contextual information is continuously displayed to the driller thereby giving him the best capacity to monitor and supervise the operational sequence. If drilling conditions change, the system will respond by automatically changing the sequence of activities to execute mitigation procedures and achieve the desired goal. At all times, the driller has the option to override the automation system and assume control by a simple touch on the rig controls. Prior to deployment, key performance indicators (KPI), including automated rig state-based measures, were selected. These KPIs are then monitored while drilling each well with the automation system to compare performance with a pre-deployment baseline. The solution was used to drill almost 60,000 ft of hole section with the system in control, and the results showed a 20% improvement in ROP with increased adherence to pre-connection and post-connection operations. Additionally, many lessons were learned from the use and observation of the automation workflow that was used to drive continuous improvement in efficiency and performance over the course of the project. This deployment was the first in the region and the system is part of a comprehensive digital well construction solution that is continuously enriched with new capabilities. This adaptive automated drilling solution delivered a step change in performance, safety, and consistency in the drilling operations.


2021 ◽  
Vol 73 (10) ◽  
pp. 45-45
Author(s):  
Martin Rylance

Communication and prediction are symmetrical. Communication, in effect, is prediction about what has happened. And prediction is communication about what is going to happen. Few industries contain as many phases, steps, and levels of interface between the start and end product as the oil and gas industry—field, office, offshore, plant, subsea, downhole, not to mention the disciplinary, functional, managerial, logistics handovers, and boundaries that exist. It therefore is hardly surprising that communication, in all its varied forms, is at the very heart of our business. The papers selected this month demonstrate how improved communication can deliver the prediction required for a variety of reasons, including safety, efficiency, and informational purposes. The application of new and exciting ways of working, partially accelerated by recent events, is leading to breakthrough improvements on all levels. Real-time processing, improved visualization, and predictive and machine-learning methods, as well as improvements in all forms of data communication, are all contributing to incremental enhancements across the board. This month, I encourage the reader to review the selected articles and determine where and how the communication and prediction are occurring and what they are delivering. Then perhaps consider performing an exercise wherein your own day-to-day roles—your own areas of communication, interfacing, and cooperation—are reviewed to see what enhancements you can make as an individual. You may be pleasantly surprised that some simple tweaks to your communication style, frequency, and format can deliver quick wins. In an era of remote working for many individuals, it is an exercise that has some value. Recommended additional reading at OnePetro: www.onepetro.org. OTC 30184 - Augmented Machine-Learning Approach of Rate-of-Penetration Prediction for North Sea Oil Field by Youngjun Hong, Seoul National University, et al. OTC 31278 - A Digital Twin for Real-Time Drilling Hydraulics Simulation Using a Hybrid Approach of Physics and Machine Learning by Prasanna Amur Varadarajan, Schlumberger, et al. OTC 31092 - Integrated Underreamer Technology With Real-Time Communication Helped Eliminate Rathole in Exploratory Operation Offshore Nigeria by Raphael Chidiogo Ozioko, Baker Hughes, et al.


2021 ◽  
Author(s):  
Henry Ijomanta ◽  
Lukman Lawal ◽  
Onyekachi Ike ◽  
Raymond Olugbade ◽  
Fanen Gbuku ◽  
...  

Abstract This paper presents an overview of the implementation of a Digital Oilfield (DOF) system for the real-time management of the Oredo field in OML 111. The Oredo field is predominantly a retrograde condensate field with a few relatively small oil reservoirs. The field operating philosophy involves the dual objective of maximizing condensate production and meeting the daily contractual gas quantities which requires wells to be controlled and routed such that the dual objectives are met. An Integrated Asset Model (IAM) (or an Integrated Production System Model) was built with the objective of providing a mathematical basis for meeting the field's objective. The IAM, combined with a Model Management and version control tool, a workflow orchestration and automation engine, A robust data-management module, an advanced visualization and collaboration environment and an analytics library and engine created the Oredo Digital Oil Field (DOF). The Digital Oilfield is a real-time digital representation of a field on a computer which replicates the behavior of the field. This virtual field gives the engineer all the information required to make quick, sound and rational field management decisions with models, workflows, and intelligently filtered data within a multi-disciplinary organization of diverse capabilities and engineering skill sets. The creation of the DOF involved 4 major steps; DATA GATHERING considered as the most critical in such engineering projects as it helps to set the limits of what the model can achieve and cut expectations. ENGINEERING MODEL REVIEW, UPDATE AND BENCHMARKING; Majorly involved engineering models review and update, real-time data historian deployment etc. SYSTEM PRECONFIGURATION AND DEPLOYMENT; Developed the DOF system architecture and the engineering workflow setup. POST DEPLOYMENT REVIEW AND UPDATE; Currently ongoing till date, this involves after action reviews, updates and resolution of challenges of the DOF, capability development by the operator and optimizing the system for improved performance. The DOF system in the Oredo field has made it possible to integrate, automate and streamline the execution of field management tasks and has significantly reduced the decision-making turnaround time. Operational and field management decisions can now be made within minutes rather than weeks or months. The gains and benefits cuts across the entire production value chain from improved operational safety to operational efficiency and cost savings, real-time production surveillance, optimized production, early problem detection, improved Safety, Organizational/Cross-discipline collaboration, data Centralization and Efficiency. The DOF system did not come without its peculiar challenges observed both at the planning, execution and post evaluation stages which includes selection of an appropriate Data Gathering & acquisition system, Parts interchangeability and device integration with existing field devices, high data latency due to bandwidth, signal strength etc., damage of sensors and transmitters on wellheads during operations such as slickline & WHM activities, short battery life, maintenance, and replacement frequency etc. The challenges impacted on the project schedule and cost but created great lessons learnt and improved the DOF learning curve for the company. The Oredo Digital Oil Field represents a future of the oil and gas industry in tandem with the industry 4.0 attributes of using digital technology to drive efficiency, reduce operating expenses and apply surveillance best practices which is required for the survival of the Oil and Gas industry. The advent of the 5G technology with its attendant influence on data transmission, latency and bandwidth has the potential to drive down the cost of automated data transmission and improve the performance of data gathering further increasing the efficiency of the DOF system. Improvements in digital integration technologies, computing power, cloud computing and sensing technologies will further strengthen the future of the DOF. There is need for synergy between the engineering team, IT, and instrumentation engineers to fully manage the system to avoid failures that may arise from interface management issues. Battery life status should always be monitored to ensure continuous streaming of real field data. New set of competencies which revolves around a marriage of traditional Petro-technical skills with data analytic skills is required to further maximize benefit from the DOF system. NPDC needs to groom and encourage staff to venture into these data analytic skill pools to develop knowledge-intelligence required to maximize benefit for the Oredo Digital Oil Field and transfer this knowledge to other NPDC Asset.


Author(s):  
Sorin Alexandru Gheorghiu ◽  
Cătălin Popescu

The present economic model is intended to provide an example of how to take into consideration risks and uncertainties in the case of a field that is developed with water injection. The risks and uncertainties are related, on one hand to field operations (drilling time, delays due to drilling problems, rig failures and materials supply, electric submersible pump [ESP] installations failures with the consequences of losing the well), and on the other hand, the second set of uncertainties are related to costs (operational expenditures-OPEX and capital expenditures-CAPEX, daily drilling rig costs), prices (oil, gas, separation, and water injection preparation), production profiles, and discount factor. All the calculations are probabilistic. The authors are intending to provide a comprehensive solution for assessing the business performance of an oil field development.


2019 ◽  
Vol 944 ◽  
pp. 637-642
Author(s):  
Gu Fan Zhao ◽  
Wei Na Di ◽  
Rui Yao Wang

The oil and gas industry places higher demands for new technologies and new materials. Advanced functional materials show broad application prospects in the oil field. Technological advances in the oil and gas sector are inseparable from the development and application of advanced functional materials. Through literature research, patent search analysis, expert consultation, some advanced functional materials with potential application in the oil field are sorted out, in order to provide inspiration and new ideas for improving the development of the oil and gas drilling technology. The nanomaterials dispersion and nanocomposites films are two of the most accessible ways to apply nanomaterials in the oil field. The cellulose nanofibers (CNF) and the diamond-like carbon (DLC) nanocomposites films would provide inspiration for the oil field chemistry and protection of downhole tools. The application of CNF and DLC nanocomposites could provide innovative ideas, research and foundation for the future development of the oil and gas drilling technology, and contribute to achieving a major technological breakthrough and improve the overall level of the oil and gas drilling technology.


Author(s):  
Nguyen Thi Duc Nguyen ◽  
Le Tran Chinh

This study aims to: (1) Summarize the criteria for selecting 3PL Provider in supply chain management from literature review and apply these criteria to build the criteria model in choosing 3PL Provider for oilfield services company X for the purpose of expanding their market in the oil and gas industry and (2) Analyze, evaluate two 3PL Providers, along with a new 3PL Provider and suggest the strategy for selecting the suitable 3PL Provider to meet the specific requirements from company X. By arranging in-depth interviews with ten people with different positions, including Operation Manager, Supply Chain Manager, Logistics Manager, Base Manager and Logistics Specialist, along with AHP approach and expert choice 11.0 software support in collecting, processing and synthesizing data to evaluate and determine the appropriate 3 PL Provider for company X. In this study, three 3PL Providers have been chosen for analyzing and evaluating – 3PL Providers A, B, and C. The final results demonstrate that there are six main criteria and 13 sub-criteria in choosing 3PL Provider for oilfield services company X. The six main criteria are Performance, Price, Services, Quality assurance, IT system and Intangible values. The results and hypothetical situations have also been presented and discussed again with the expert logistics group to get their feedback about the practicability of the built model. The expert logistics group has agreed that the built criteria model and results are appropriate and adequate for evaluating and selecting a suitable 3PL Provider from the company’s specific demands. Consequently, this study can also be applied for similar purposes in other companies and shipping agents who need to work with outsourcing logistics services in oil and gas industry by using this built criteria model and synthesis results to find out the right decision for selecting 3PL Provider.


2021 ◽  
Vol 14 (4) ◽  
pp. 369-374
Author(s):  
O. I. Kalinskiy ◽  
M. A. Afonasiev

The authors study oil and gas industry, its condition and perspective trends of industrial development. One of them involves applying low carbon and low cost technologies. The authors introduce new strategic imperatives in oil and gas sector to perform energy transition. They study the types of categories of perspective trends of the industry’s development: scaling up the development and implementation of a carbon capture and storage system, using low carbon raw materials, making it possible to take granular measurements. The article deals with perspectives of the oil and gas industry for the current year. The perspectives are built with the consideration of the previous year’s indicators and include all the past disasters and the dynamics of their solution and the results for the society. The authors show wider implementation of drones used for abnormal emissions of hydrogen sulfide to carry out distant monitoring, observations, inspections and preventive maintenance, change tracking, methane management, emergency response and material processing. The article describes precision drilling which reduces the risk of accidents, oil spills, fires and increases rate of penetration. The authors present microwave hydraulic fracturing which can become the next significant achievement in the perspective development of the industry.


Author(s):  
M. Chukunedum Onojake ◽  
T. Angela Waka

The petroleum industry includes the global processes of exploration, extraction, refining, transportation and marketing of natural gas, crude oil and refined petroleum products. The oil industry demands more sophisticated methods for the exploitation of petroleum. As a result, the use of oil field chemicals is becoming increasingly important and has received much attention in recent years due to the vast role they play in the recovery of hydrocarbons which has enormous  commercial benefits. The three main sectors of the petroleum industry are Upstream, Midstream and Downstream. The Upstream deals with exploration and the subsequent production (drilling of exploration wells to recover oil and gas). In the Midstream sector, petroleum produced is transported through pipelines as natural gas, crude oil, and natural gas liquids. Downstream sector is basically involved in the processing of the raw materials obtained from the Upstream sector. The operations comprises of refining of crude oil, processing and purifying of natural gas. Oil field chemicals offers exceptional applications in these sectors with wide range of applications in operations such as improved oil recovery, drilling optimization, corrosion protection, mud loss prevention, drilling fluid stabilization in high pressure and high temperature environment, and many others. Application of a wide range of oilfield chemicals is therefore essential to rectify issues and concerns which may arise from oil and gas operational activities. This review intends to highlight some of the oil field chemicals and  their positive applications in the oil and gas Industries.


Sign in / Sign up

Export Citation Format

Share Document