scholarly journals Control Performances of Friction Pendulum and Sloped Rolling-Type Bearings Designed with Single Parameters

2020 ◽  
Vol 10 (20) ◽  
pp. 7200
Author(s):  
Shiang-Jung Wang ◽  
Yi-Lin Sung ◽  
Cho-Yen Yang ◽  
Wang-Chuen Lin ◽  
Chung-Han Yu

Owing to quite different features and hysteretic behavior of friction pendulum bearings (FPBs) and sloped rolling-type bearings (SRBs), their control performances might not be readily compared without some rules. In this study, first, on the premise of retaining the same horizontal acceleration control performance, the effects arising from different sloping angles and damping forces on the horizontal maximum and residual displacement responses of SRBs are numerically examined. For objective comparison of passive control performances of FPBs and SRBs, then, some criteria are considered to design FPBs with the same horizontal acceleration control performance by referring to the designed damping force and the maximum horizontal displacement response of SRBs under a given seismic demand. Based on the considered criteria, the passive control performances of FPBs and SRBs under a large number of far-field and pulse-like near-fault ground motions are quantitatively compared. The numerical comparison results indicate that the FPB models might potentially have better horizontal acceleration and isolation displacement control performances than the SRB models regardless of whether they are subjected to far-field or near-fault ground motions, while the opposite tendency is observed for their self-centering performances, especially when the SRB model designed with a larger sloping angle or a smaller damping force.

2001 ◽  
Vol 01 (02) ◽  
pp. 235-246 ◽  
Author(s):  
CHIN-HSIUNG LOH ◽  
SHIUAN WAN ◽  
YI-WEN CHANG

This paper examines the dynamic behavior of a highway RC-bridge subjected to both near-fault and far-field ground motions. The bridge consists of a hinge supported continuous girder with six concrete piers and the bridge is designed according to the Taiwan seismic design code. To investigate the hysteretic behavior of the bridge piers, cyclic loading tests were carried out at the National Center for Research on Earthquake Engineering (NCREE). The Chi-Chi earthquake ground motion record was adopted as the near-fault earthquake characteristics whereas another earthquake record was selected for the far-field earthquake characteristics. The ductility demands and base shear demands due to the near-fault and the far-field earthquake ground motions are compared and conclusions drawn from the study. The stipulation of code limitations and the present calculated demands are discussed.


2020 ◽  
Vol 36 (3) ◽  
pp. 1485-1516
Author(s):  
Jui-Liang Lin ◽  
Wen-Hui Chen ◽  
Fu-Pei Hsiao ◽  
Yuan-Tao Weng ◽  
Wen-Cheng Shen ◽  
...  

A shaking table test of a three-story reinforced concrete (RC) building was conducted. The tested building is vertically irregular because of the first story’s elevated height and the third story’s added RC walls. In addition to far-field ground motions, near-fault ground motions were exerted on this building. A numerical model of the three-story building was constructed. Comparing with the test results indicates that the numerical model is satisfactory for simulating the seismic response of the three-story building. This validated numerical model was then further applied to look into two issues: the effective section rigidities of RC members and the effects of near-fault ground motions. The study results show the magnitude of the possible discrepancy between the actual seismic response and the estimated seismic response, when the effective section rigidities of the RC members are treated as in common practice. An incremental dynamic analysis of the three-story RC building subjected to one far-field and one near-fault ground motion, denoted as CHY047 and TCU052, respectively, was conducted. In comparison with the far-field ground motion, the near-fault ground motion is more destructive to this building. In addition, the effect of the selected near-fault ground motion (i.e. TCU052) on the building’s collapse is clearly identified.


2016 ◽  
Vol 24 (7) ◽  
pp. 1264-1282 ◽  
Author(s):  
Saman Bagheri ◽  
Mostafa Farajian

There are several methods to reduce the seismic damages in liquid storage tanks. One of these methods is to use passive control devices, in particular seismic base isolators. Among the different base isolation systems, the Friction Pendulum System (FPS) whose period does not depend on the weight of the system is more appropriate for isolation of liquid storage tanks. The aim of this paper is to investigate the effects of peak ground acceleration (PGA) and pulselike characteristics of earthquakes on the seismic behavior of steel liquid storage tanks base isolated by FPS bearings. In addition, impact effects of the slider with the side retainer are investigated, as well as effects of tank aspect ratio, isolation period and friction coefficient. The obtained results of tanks with different aspect ratios indicate that the responses get more reduced due to isolation under far-field ground motions compared to near-fault ground motions. It is also seen that the response of a base isolated tank is affected when contact takes place with the side retainer of the FPS.


2018 ◽  
Vol 12 (05) ◽  
pp. 1850011 ◽  
Author(s):  
Jiang Yi ◽  
Jianzhong Li ◽  
Zhongguo Guan

To investigate the effectiveness of viscous damper on seismic control of single-tower cable-stayed bridges subjected to near-field ground motions, a 1/20-scale full cable-stayed bridge model was designed, constructed and tested on shake tables. A typical far-field ground motion and a near-field one were used to excite the bridge model from low to high intensity. The seismic responses of the bridge model with and without viscous dampers were analyzed and compared. Both numerical and test results revealed that viscous dampers are quite effective in controlling deck displacement of cable-stayed bridges subjected to near-field ground motions. However, due to near-field effects, viscous damper dissipated most energy through one large hysteresis loop, extensively increasing the deformation and damping force demand of the damper. Further study based on numerical analysis reveals that to optimize deck displacement of cable-stayed bridges during an earthquake, a viscous damper with relatively larger damping coefficient should be introduced under near-field ground motions than far-field ones.


Author(s):  
Shiang-Jung Wang ◽  
Yin-Nan Huang ◽  
Hsueh-Wen Lee ◽  
Yu-Wen Chang

The design displacement, its corresponding acceleration performance, and the re-centering performance of bilinear hysteretic isolation systems are adopted as previously determined design objectives for equivalent linear analysis. To demonstrate the applicability and generalization of the analysis procedure, two sets of values for damping modification factors are employed in the analysis: those provided by ASCE/SEI 7-16, and those estimated for different ranges of the ratios of effective periods of seismic isolation systems to pulse periods of ground motions. To investigate a broad range of seismic responses of base-isolated structures, 15 pulse-like near-fault ground motions are used for numerical demonstration. The analysis procedure is numerically verified to be practically feasible. A numerical comparison also shows that the three design objectives previously determined in the analysis procedure are sufficiently conservative compared with analysis results from nonlinear dynamic response history, even when subjected to pulse-like near-fault ground motions. Regarding the approximation to maximum inelastic acceleration and displacement responses, it is particularly more conservative for the former when the design displacement is greater and when adopting values of the damping modification factors provided in ASCE/SEI 7-16. For the approximation to dynamic residual displacement responses, the influences of pulse-like near-fault ground motions and different design objectives on the re-centering performance of bilinear hysteretic isolation systems still need further study.


Sign in / Sign up

Export Citation Format

Share Document