scholarly journals Accumulation of Methylmercury in the High-Altitude Lake Uru Uru (3686 m a.s.l, Bolivia) Controlled by Sediment Efflux and Photodegradation

2020 ◽  
Vol 10 (21) ◽  
pp. 7936
Author(s):  
Stéphane Guédron ◽  
Dario Achá ◽  
Sylvain Bouchet ◽  
David Point ◽  
Emmanuel Tessier ◽  
...  

In shallow aquatic environments, sediment is a significant source of monomethylmercury (MMHg) for surface water (SW). High-altitude aquatic ecosystems are characterized by extreme hydro-climatic constraints (e.g., low oxygen and high UV radiation). We studied, during two seasons, the diel cycles of MMHg in SW and sediment porewaters (PW) of Lake Uru Uru (3686 m a.s.l, Bolivia) contaminated by urban and mining activities. Our results show that diel changes in SW MMHg concentrations (up to 1.8 ng L−1) overwhelm seasonal ones, with higher MMHg accumulation during the night-time and the dry season. The calculation of MMHg diffusive fluxes demonstrates that the sediment compartment was the primary source of MMHg to the SW. Most MMHg efflux occurred during the dry season (35.7 ± 17.4 ng m−2 day−1), when the lake was relatively shallow, more eutrophicated, and with the redoxcline located above the sediment–water interface (SWI). Changes in MMHg accumulation in the PWs were attributed to diel redox oscillations around the SWI driving both the bacterial sulfate reduction and bio-methylation. Finally, we highlight that although MMHg loading from the PW to the SW is large, MMHg photodegradation and demethylation by microorganisms control the net MMHg accumulation in the water column.

Author(s):  
James W. E. Dickey ◽  
Neil E. Coughlan ◽  
Jaimie T. A. Dick ◽  
Vincent Médoc ◽  
Monica McCard ◽  
...  

AbstractThe influence of climate change on the ecological impacts of invasive alien species (IAS) remains understudied, with deoxygenation of aquatic environments often-overlooked as a consequence of climate change. Here, we therefore assessed how oxygen saturation affects the ecological impact of a predatory invasive fish, the Ponto-Caspian round goby (Neogobius melanostomus), relative to a co-occurring endangered European native analogue, the bullhead (Cottus gobio) experiencing decline in the presence of the IAS. In individual trials and mesocosms, we assessed the effect of high, medium and low (90%, 60% and 30%) oxygen saturation on: (1) functional responses (FRs) of the IAS and native, i.e. per capita feeding rates; (2) the impact on prey populations exerted; and (3) how combined impacts of both fishes change over invasion stages (Pre-invasion, Arrival, Replacement, Proliferation). Both species showed Type II potentially destabilising FRs, but at low oxygen saturation, the invader had a significantly higher feeding rate than the native. Relative Impact Potential, combining fish per capita effects and population abundances, revealed that low oxygen saturation exacerbates the high relative impact of the invader. The Relative Total Impact Potential (RTIP), modelling both consumer species’ impacts on prey populations in a system, was consistently higher at low oxygen saturation and especially high during invader Proliferation. In the mesocosm experiment, low oxygen lowered RTIP where both species were present, but again the IAS retained high relative impact during Replacement and Proliferation stages at low oxygen. We also found evidence of multiple predator effects, principally antagonism. We highlight the threat posed to native communities by IAS alongside climate-related stressors, but note that solutions may be available to remedy hypoxia and potentially mitigate impacts across invasion stages.


2007 ◽  
Vol 292 (1) ◽  
pp. E272-E280 ◽  
Author(s):  
Francesca Ietta ◽  
Yuanhong Wu ◽  
Roberta Romagnoli ◽  
Nima Soleymanlou ◽  
Barbara Orsini ◽  
...  

Macrophage migration inhibitory factor (MIF) is an important proinflammatory cytokine involved in regulation of macrophage function. In addition, MIF may also play a role in murine and human reproduction. Although both first trimester trophoblast and decidua express MIF, the regulation and functional significance of this cytokine during human placental development remains unclear. We assessed MIF expression throughout normal human placental development, as well as in in vitro (chorionic villous explants) and in vivo (high altitude placentae) models of human placental hypoxia. Dimethyloxalylglycine (DMOG), which stabilizes hypoxia inducible factor-1 under normoxic conditions, was also used to mimic the effects of hypoxia on MIF expression. Quantitative real-time PCR and Western blot analysis showed high MIF protein and mRNA expression at 7–10 wk and lower levels at 11–12 wk until term. Exposure of villous explants to 3% O2 resulted in increased MIF expression and secretion relative to standard conditions (20% O2). DMOG treatment under 20% O2 increased MIF expression. In situ hybridization and immunohistochemistry showed elevated MIF expression in low oxygen-induced extravillous trophoblast cells. Finally, a significant increase in MIF transcript was observed in placental tissues from high-altitude pregnancies. Hence, three experimental models of placental hypoxia (early gestation, DMOG treatment, and high altitude) converge in stimulating increased MIF, supporting the conclusion that placental-derived MIF is an oxygen-responsive cytokine highly expressed in physiological in vivo and in in vitro low oxygen conditions.


2015 ◽  
Vol 75 (1) ◽  
pp. 98-103 ◽  
Author(s):  
RA. Moreira ◽  
O. Rocha ◽  
RM. Santos ◽  
R. Laudares-Silva ◽  
ES. Dias ◽  
...  

Dinoflagellates of the genus Ceratium are generally marine organisms, but rare occurrences in freshwater have been observed in Brazil. In this paper we are recording for the first time the presence of Ceratium furcoides, an invasive species, in a shallow, natural intermittent pool formed at a high-altitude at the southern end of the Iron Quadrangle, an iron-mining district of Minas Gerais State (Southeast Brazil). Samples were collected in October and November of 2010 (rainy period). The population density of this organism observed in Lagoa Seca (“Dry Pool”) was very low, at most 4 ind L–1. Mountain lakes are extremely vulnerable to atmospheric deposition of organisms, making them valuable witnesses both of the many forms of impact arising from human activities and of the extended global connections that facilitate the dispersion and introduction of new species over great distances. Studies on the population dynamics of C. furcoides in natural tropical systems are still rare and very recent to the brazilian scenario and hence the monitoring of its dynamics and the potential impact on aquatic communities of its becoming established are essential to an understanding of the process of bioinvasion by this species.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yanan Yang ◽  
Haonan Yuan ◽  
Tianliang Yang ◽  
Yongqing Li ◽  
Caixia Gao ◽  
...  

To adapt to a low-oxygen environment, Tibetan pigs have developed a series of unique characteristics and can transport oxygen more effectively; however, the regulation of the associated processes in high-altitude animals remains elusive. We performed mRNA-seq and miRNA-seq, and we constructed coexpression regulatory networks of the lung tissues of Tibetan and Landrace pigs. HBB, AGT, COL1A2, and EPHX1 were identified as major regulators of hypoxia-induced genes that regulate blood pressure and circulation, and they were enriched in pathways related to signal transduction and angiogenesis, such as HIF-1, PI3K-Akt, mTOR, and AMPK. HBB may promote the combination of hemoglobin and oxygen as well as angiogenesis for high-altitude adaptation in Tibetan pigs. The expression of MMP2 showed a similar tendency of alveolar septum thickness among the four groups. These results indicated that MMP2 activity may lead to widening of the alveolar wall and septum, alveolar structure damage, and collapse of alveolar space with remarkable fibrosis. These findings provide a perspective on hypoxia-adaptive genes in the lungs in addition to insights into potential candidate genes in Tibetan pigs for further research in the field of high-altitude adaptation.


2016 ◽  
Vol 10 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Aibek E. Mirrakhimov ◽  
Kingman P. Strohl

High-altitude pulmonary hypertension (HAPH) affects individuals residing at altitudes of 2,500 meters and higher. Numerous pathogenic variables play a role in disease inception and progression and include low oxygen concentration in inspired air, vasculopathy, and metabolic abnormalities. Since HAPH affects only some people living at high altitude genetic factors play a significant role in its pathogenesis. The clinical presentation of HAPH is nonspecific and includes fatigue, shortness of breath, cognitive deficits, cough, and in advanced cases hepatosplenomegaly and overt right-sided heart failure. A thorough history is important and should include a search for additional risk factors for lung disease and pulmonary hypertension (PH) such as smoking, indoor air pollution, left-sided cardiac disease and sleep disordered breathing. Twelve-lead electrocardiogram, chest X-ray and echocardiography can be used as screening tools. A definitive diagnosis should be made with right-sided heart catheterization using a modified mean pulmonary artery pressure of at least 30 mm Hg, differing from the 25 mm Hg used for other types of PH. Treatment of HAPH includes descent to a lower altitude whenever possible, oxygen therapy and the use of medications such as endothelin receptor antagonists, phosphodiesterase 5 blockers, fasudil and acetazolamide. Some recent evidence suggests that iron supplementation may also be beneficial. However, it is important to note that the scientific literature lacks long-term randomized controlled data on the pharmacologic treatment of HAPH. Thus, an individualized approach to treatment and informing the patients regarding the benefits and risks of the selected treatment regimen are essential.


Author(s):  
Quanyi Liu ◽  
Wei Yao ◽  
Jiusheng Yin ◽  
Rui Yang ◽  
Hui Zhang

Airplane as one of the important transport vehicles in our life, its safety problem related to in-flight fire has attracted a wide-spread attention. The combustion behavior of the cabin fire in flight shows some special characteristics because of the high-altitude environment with low-pressure and low oxygen concentration. A low-pressure chamber of size 2 m×3 m×2 m has been built to simulate high-altitude environments, where multiple static pressures for pool fire tests can be configured in the range between standard atmospheric pressure 101.3KPa and 30KPa. Two different sizes of pool fires were tested. Then corresponding modeling were conducted by a LES code FDS V5.5 to examine the mechanism of pressure effect on the n-Heptane pool fire behavior. The burning of liquid fuel was modeled by a Clausius-Clapeyron relation based liquid pyrolysis model. The modeling data was validated against the experimental measurements. The mass burning rate of free-burning pool fire decreases with the decreasing of pressure, which was observed from the modeling to be due to the reduction of flame heat feedback to the fuel surface. Under low pressure, the fire plume temperature increases for the same burning rate. The mechanism of pressure effect on fire behavior was analyzed based on the modeling data.


2015 ◽  
Vol 118 (5) ◽  
pp. 509-519 ◽  
Author(s):  
Andrew M. Luks

With the growing interest in adventure travel and the increasing ease and affordability of air, rail, and road-based transportation, increasing numbers of individuals are traveling to high altitude. The decline in barometric pressure and ambient oxygen tensions in this environment trigger a series of physiologic responses across organ systems and over a varying time frame that help the individual acclimatize to the low oxygen conditions but occasionally lead to maladaptive responses and one or several forms of acute altitude illness. The goal of this Physiology in Medicine article is to provide information that providers can use when counseling patients who present to primary care or travel medicine clinics seeking advice about how to prevent these problems. After discussing the primary physiologic responses to acute hypoxia from the organ to the molecular level in normal individuals, the review describes the main forms of acute altitude illness—acute mountain sickness, high-altitude cerebral edema, and high-altitude pulmonary edema—and the basic approaches to their prevention and treatment of these problems, with an emphasis throughout on the physiologic basis for the development of these illnesses and their management.


2021 ◽  
Author(s):  
Sebastián Palomino-Ángel ◽  
Raúl F. Vázquez ◽  
Henrietta Hampel ◽  
Jesús A. Anaya-Acevedo ◽  
Pablo V. Mosquera ◽  
...  

<p>Spatiotemporal characteristics of physical responses of lakes to external and environmental changes are still largely unknown due to the consistent lack of monitoring of water level and corresponding changes in water storage in lakes. Understanding these changes is a fundamental step in advancing regional management of natural and anthropogenic systems that depend on the water resources of lakes. As an illustrative example, we here report a case study involving lakes of the headwater topical Andes mountain range, which, despite guaranteeing water security to millions of downstream inhabitants, still remain significantly ungauged. We present a novel evaluation of the potential of Differential Interferometric Synthetic Aperture Radar DInSAR techniques for the spatiotemporal analysis of patterns of water level change in lakes such as the ones comprising these ungauged high-altitude lake systems. Time series of Sentinel-1B data for the years 2017 and 2018 were used to generate continuous interferograms representing water level changes in twenty-four lakes of the Cajas National Park, Ecuador. The relation of these water level changes with climatic and topographical factors were analyzed to validate the methodology, and determine any patterns of change and response to climatic drivers. We found relatively high Pearson correlation coefficients between regional precipitation and water level change as estimated from the interferograms. Furthermore, we found an important negative relationship between water level change, as obtained from the DInSAR phase, and lake surface area. The study revealed a spatial trend of this correlation in terms of the altitude of the lakes at the basin scale; that is, lower correlation values were found in the headers of the basins, whilst higher correlation values were found at lower basin altitudes. The results of the present study demonstrate the potential of DInSAR techniques based on Sentinel-1 data for the monitoring of hydrologic changes in open water surfaces, and the possible validation of the DInSAR results with precipitation when gauged water level data is missing. These results are a basis to propose monitoring strategies in ungauged high-altitude lake systems in regions with similar data gauging constraints. Future work will encompass the integration of ongoing water level gauging for further validation of the herein depicted lake water level estimation approach.</p>


2002 ◽  
Vol 62 (1) ◽  
pp. 63-68 ◽  
Author(s):  
M. CALLISTO ◽  
F. A. R. BARBOSA ◽  
P. MORENO

The influence of Eucalyptus plantations on the structure and composition of macroinvertebrate communities associated with the aquatic fern Salvinia auriculata Aublet were investigated in a high altitude lake bordered by either secondary Atlantic forest or Eucalyptus plantations. Comparisons of the diversity of Chironomidae (Diptera, Insecta) larvae in the littoral zone between these two vegetation types showed higher diversity of larvae in waters bordered by Eucalyptus. The results demonstrated that the predominance of carnivorous taxa among the macroinvertebrate fauna appears to be the major controlling factor for limiting diversity in lake areas bordered by Eucalyptus.


Sign in / Sign up

Export Citation Format

Share Document