scholarly journals Transition from Microstrip Line to Ridge Empty Substrate Integrated Waveguide Based on the Equations of the Superellipse

2020 ◽  
Vol 10 (22) ◽  
pp. 8101
Author(s):  
David Herraiz ◽  
Héctor Esteban ◽  
Juan A. Martínez ◽  
Angel Belenguer ◽  
Santiago Cogollos ◽  
...  

In recent years, multiple technologies have been proposed with the aim of combining the characteristics of traditional planar and non-planar transmission lines. The first and most popular of these technologies is the Substrate Integrated Waveguide (SIW), where rows of metallic vias are mechanized in a printed circuit board (PCB). These vias, together with the top and bottom metal layers of the PCB, form a channel for the propagation of the electromagnetic fields, similar to that of a rectangular waveguide, but through a dielectric body, which increases the losses. To reduce these losses, the empty substrate integrated waveguide (ESIW) was recently proposed. In the ESIW, the dielectric is removed from the substrate, and this results in better performance (low profile and easy manufacturing as in SIW, but lower losses and better quality factor for resonators). Recently, to increase the operational bandwidth (monomode propagation) of the ESIW, the ridge ESIW (RESIW) and a transition from RESIW to microstrip line was proposed. In this work, a new and improved wideband transition from microstrip line (MS) to RESIW, with a dielectric taper based on the equations of the superellipse, is proposed. The new wideband transition presents simulated return losses in a back-to-back transition greater than 20 dB in an 87% fractional bandwidth, while in the previous transition the fractional bandwidth was 82%. This is an increment of 5%. In addition, the transition presents simulated return losses greater than 26 dB in an 84% fractional bandwidth. For validation purposes, a back-to-back configuration of the new transition was successfully manufactured and measured. The measured return loss is better than 14 dB with an insertion loss lower than 1 dB over the whole band.

Author(s):  
Keyur Mahant ◽  
Hiren Mewada ◽  
Amit Patel ◽  
Alpesh Vala ◽  
Jitendra Chaudhari

Aim: In this article, wideband substrate integrated waveguide (SIW) and rectangular waveguide (RWG) transition operating in Ka-band is proposed Objective: In this article, wideband substrate integrated waveguide (SIW) and rectangular waveguide (RWG) transition operating in Ka-band is proposed. Method: Coupling patch etched on the SIW cavity to couple the electromagnetic energy from SIW to RWG. Moreover, metasurface is introduced into the radiating patch to enhance bandwidth. To verify the functionality of the proposed structure back to back transition is designed and fabricated on a single layer substrate using standard printed circuit board (PCB) fabrication technology. Results: Measured results matches with the simulation results, measured insertion loss is less than 1.2 dB and return loss is better than 3 dB for the frequency range of 28.8 to 36.3 GHz. By fabricating transition with 35 SRRs bandwidth of the proposed transition can be improved. Conclusion: The proposed transition has advantages like compact in size, easy to fabricate, low cost and wide bandwidth. Proposed structure is a good candidate for millimeter wave circuits and systems.


2016 ◽  
Vol 2016 (1) ◽  
pp. 000358-000363 ◽  
Author(s):  
Qianfei Su ◽  
A. Ege Engin ◽  
Jerry Aguirre

Abstract Signal attenuation in transmission lines is a major issue for reliable transmission in high frequency range. Knowledge of the electrical parameters of printed circuit board (PCB), including dielectric constant and loss tangent, is critical. Moreover, surface roughness has a great effect on loss in high frequency. This paper demonstrates an effective simulation fitting method for electrical material characterization. Cavity resonator is chosen as the circuit for characterization. A methodology is presented to measure surface roughness from cross sections, and compared with values extracted from resonator measurements. Several materials and copper foils treatments, including low-profile, are analyzed in this paper.


2021 ◽  
Vol 11 (15) ◽  
pp. 6885
Author(s):  
Marcos D. Fernandez ◽  
José A. Ballesteros ◽  
Angel Belenguer

Empty substrate integrated coaxial line (ESICL) technology preserves the many advantages of the substrate integrated technology waveguides, such as low cost, low profile, or integration in a printed circuit board (PCB); in addition, ESICL is non-dispersive and has low radiation. To date, only two transitions have been proposed in the literature that connect the ESICL to classical planar lines such as grounded coplanar and microstrip. In both transitions, the feeding planar lines and the ESICL are built in the same substrate layer and they are based on transformed structures in the planar line, which must be in the central layer of the ESICL. These transitions also combine a lot of metallized and non-metallized parts, which increases the complexity of the manufacturing process. In this work, a new through-wire microstrip-to-ESICL transition is proposed. The feeding lines and the ESICL are implemented in different layers, so that the height of the ESICL can be independently chosen. In addition, it is a highly compact transition that does not require a transformer and can be freely rotated in its plane. This simplicity provides a high degree of versatility in the design phase, where there are only four variables that control the performance of the transition.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Mohammad Reza Khawary ◽  
Vahid Nayyeri ◽  
Seyed Mohammad Hashemi ◽  
Mohammad Soleimani

This paper presents a novel ultracompact narrow bandpass filter with high selectivity. The proposed filter is composed of cascading two basic cells. Each cell is basically a microstrip line loaded with a quasiplanar resonator and series gaps which can be fabricated using a standard multilayer printed circuit board technology. The structure is analyzed through an equivalent circuit and full-wave simulations. The simulation results are compared with experimental measurements demonstrating a good agreement between them. The measurement indicates that the realized bandpass filter at the center frequency of 1 GHz has a fractional bandwidth of 2.2%. Most importantly, in comparison with other similar recent works, it is shown that the proposed filter has the smallest size.


2018 ◽  
Vol 10 (8) ◽  
pp. 896-903 ◽  
Author(s):  
Amit Ranjan Azad ◽  
Dharmendra Kumar Jhariya ◽  
Akhilesh Mohan

AbstractThis paper presents a substrate-integrated waveguide (SIW) mixed electric and magnetic coupling structure implemented on a single-layer substrate to create finite transmission zeros (TZs), which can be used to design microwave filters with higher frequency selectivity. Mixed coupling is realized by three slot-lines on the top metal plane combined with an iris-window between two adjacent SIW cavities. The electric and magnetic coupling can be separately controlled by adjusting the dimensions of the slot-lines and the width of the iris-window, and a controllable TZ below or above the passband can be produced. Furthermore, a detailed analysis of the mixed coupling structure is presented. To demonstrate the validity of the proposed structure, third- and fourth-order cross-coupled generalized Chebyshev bandpass filters are designed and fabricated using the standard printed circuit board process. The experimental results are in good agreement with the simulation results. The filters exhibit simple structure and good frequency selectivity.


Sign in / Sign up

Export Citation Format

Share Document