scholarly journals An Improvement on Estimated Drifter Tracking through Machine Learning and Evolutionary Search

2020 ◽  
Vol 10 (22) ◽  
pp. 8123
Author(s):  
Yong-Wook Nam ◽  
Hwi-Yeon Cho ◽  
Do-Youn Kim ◽  
Seung-Hyun Moon ◽  
Yong-Hyuk Kim

In this study, we estimated drifter tracking over seawater using machine learning and evolutionary search techniques. The parameters used for the prediction are the hourly position of the drifter, the wind velocity, and the flow velocity of each drifter position. Our prediction model was constructed through cross-validation. Trajectories were affected by wind velocity and flow velocity from the starting points of drifters. Mean absolute error (MAE) and normalized cumulative Lagrangian separation (NCLS) were used to evaluate various prediction models. Radial basis function network showed the lowest MAE of 0.0556, an improvement of 35.20% over the numerical model MOHID. Long short-term memory showed the highest NCLS of 0.8762, an improvement of 6.24% over MOHID.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Anselim M. Mwaura ◽  
Yong-Kuo Liu

Fault diagnosis occurrence and its precise prediction in nuclear power plants are extremely important in avoiding disastrous consequences. The inherent limitations of the current fault diagnosis methods make machine learning techniques and their hybrid methodologies possible solutions to remedy this challenge. This study sought to develop, examine, compare, and contrast three robust machine learning methodologies of adaptive neurofuzzy inference system, long short-term memory, and radial basis function network by modeling the loss of feed water event using RELAP5. The performance indices of residual plots, mean absolute percentage error, root mean squared error, and coefficient of determination were used to determine the most suitable algorithms for accurately diagnosing the loss of feed water transient signatures. The study found out that the adaptive neurofuzzy inference system model outperformed the other schemes when predicting the temperature of the steam generator tubes, the radial basis function network scheme was best suited in forecasting the mass flow rate at the core inlet, while the long short-term memory algorithm was best suited for the estimation of the severities of the loss of the feed water fault.


2021 ◽  
Vol 10 (11) ◽  
pp. e33101119347
Author(s):  
Ewethon Dyego de Araujo Batista ◽  
Wellington Candeia de Araújo ◽  
Romeryto Vieira Lira ◽  
Laryssa Izabel de Araujo Batista

Introdução: a dengue é uma arbovirose causada pelo vírus DENV e transmitida para o homem através do mosquito Aedes aegypti. Atualmente, não existe uma vacina eficaz para combater todas as sorologias do vírus. Diante disso, o combate à doença se volta para medidas preventivas contra a proliferação do mosquito. Os pesquisadores estão utilizando Machine Learning (ML) e Deep Learning (DL) como ferramentas para prever casos de dengue e ajudar os governantes nesse combate. Objetivo: identificar quais técnicas e abordagens de ML e de DL estão sendo utilizadas na previsão de dengue. Métodos: revisão sistemática realizada nas bases das áreas de Medicina e de Computação com intuito de responder as perguntas de pesquisa: é possível realizar previsões de casos de dengue através de técnicas de ML e de DL, quais técnicas são utilizadas, onde os estudos estão sendo realizados, como e quais dados estão sendo utilizados? Resultados: após realizar as buscas, aplicar os critérios de inclusão, exclusão e leitura aprofundada, 14 artigos foram aprovados. As técnicas Random Forest (RF), Support Vector Regression (SVR), e Long Short-Term Memory (LSTM) estão presentes em 85% dos trabalhos. Em relação aos dados, na maioria, foram utilizados 10 anos de dados históricos da doença e informações climáticas. Por fim, a técnica Root Mean Absolute Error (RMSE) foi a preferida para mensurar o erro. Conclusão: a revisão evidenciou a viabilidade da utilização de técnicas de ML e de DL para a previsão de casos de dengue, com baixa taxa de erro e validada através de técnicas estatísticas.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1544
Author(s):  
Ashis Kumar Mandal ◽  
Rikta Sen ◽  
Saptarsi Goswami ◽  
Basabi Chakraborty

Accurate global horizontal irradiance (GHI) forecasting is crucial for efficient management and forecasting of the output power of photovoltaic power plants. However, developing a reliable GHI forecasting model is challenging because GHI varies over time, and its variation is affected by changes in weather patterns. Recently, the long short-term memory (LSTM) deep learning network has become a powerful tool for modeling complex time series problems. This work aims to develop and compare univariate and several multivariate LSTM models that can predict GHI in Guntur, India on a very short-term basis. To build the multivariate time series models, we considered all possible combinations of temperature, humidity, and wind direction variables along with GHI as inputs and developed seven multivariate models, while in the univariate model, we considered only GHI variability. We collected the meteorological data for Guntur from 1 January 2016 to 31 December 2016 and built 12 datasets, each containing variability of GHI, temperature, humidity, and wind direction of a month. We then constructed the models, each of which measures up to 2 h ahead of forecasting of GHI. Finally, to measure the symmetry among the models, we evaluated the performances of the prediction models using root mean square error (RMSE) and mean absolute error (MAE). The results indicate that, compared to the univariate method, each multivariate LSTM performs better in the very short-term GHI prediction task. Moreover, among the multivariate LSTM models, the model that incorporates the temperature variable with GHI as input has outweighed others, achieving average RMSE values 0.74 W/m2–1.5 W/m2.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2521
Author(s):  
Xin Wang ◽  
Huizan Wang ◽  
Donghan Liu ◽  
Wenke Wang

Mesoscale eddies play an important role in ocean circulation, material energy exchange and variation of ocean environments. Machine learning methods can efficiently process massive amounts of data and automatically learn the implicit features, thus providing a new approach to eddy prediction research. Using the mesoscale eddy trajectory data derived from multimission satellite altimetry, we propose relevant machine learning models based on long short-term memory network (LSTM) and the extra trees (ET) algorithm for the prediction of eddy properties and propagation trajectories. Characteristic factors, including attribute features and past eddy displacements, were exploited to construct prediction models with high effectiveness and few predictors. To study their effects at different forecasting times, we separately trained the models by rebuilding the corresponding relationship between eddy samples and labels. In addition, the variation characteristics and the predictability of eddy properties and propagation trajectories were discussed from the prediction results. Cross-validation shows that at different prediction times, our method is superior to previous methods in terms of the mean absolute error (MAE) of eddy properties and the root mean square error (RMSE) of propagation. The stable variation in eddy properties makes the prediction more dependent on the historical time series than that of a propagation forecast. The short-term propagation prediction of eddies contained more noise than long-term predictions, and the long-term predictions revealed a more significant trend. Finally, we discuss the effect of eddy properties on the prediction ability of the eddy propagation trajectory.


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3678
Author(s):  
Dongwon Lee ◽  
Minji Choi ◽  
Joohyun Lee

In this paper, we propose a prediction algorithm, the combination of Long Short-Term Memory (LSTM) and attention model, based on machine learning models to predict the vision coordinates when watching 360-degree videos in a Virtual Reality (VR) or Augmented Reality (AR) system. Predicting the vision coordinates while video streaming is important when the network condition is degraded. However, the traditional prediction models such as Moving Average (MA) and Autoregression Moving Average (ARMA) are linear so they cannot consider the nonlinear relationship. Therefore, machine learning models based on deep learning are recently used for nonlinear predictions. We use the Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) neural network methods, originated in Recurrent Neural Networks (RNN), and predict the head position in the 360-degree videos. Therefore, we adopt the attention model to LSTM to make more accurate results. We also compare the performance of the proposed model with the other machine learning models such as Multi-Layer Perceptron (MLP) and RNN using the root mean squared error (RMSE) of predicted and real coordinates. We demonstrate that our model can predict the vision coordinates more accurately than the other models in various videos.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lei Li ◽  
Desheng Wu

PurposeThe infraction of securities regulations (ISRs) of listed firms in their day-to-day operations and management has become one of common problems. This paper proposed several machine learning approaches to forecast the risk at infractions of listed corporates to solve financial problems that are not effective and precise in supervision.Design/methodology/approachThe overall proposed research framework designed for forecasting the infractions (ISRs) include data collection and cleaning, feature engineering, data split, prediction approach application and model performance evaluation. We select Logistic Regression, Naïve Bayes, Random Forest, Support Vector Machines, Artificial Neural Network and Long Short-Term Memory Networks (LSTMs) as ISRs prediction models.FindingsThe research results show that prediction performance of proposed models with the prior infractions provides a significant improvement of the ISRs than those without prior, especially for large sample set. The results also indicate when judging whether a company has infractions, we should pay attention to novel artificial intelligence methods, previous infractions of the company, and large data sets.Originality/valueThe findings could be utilized to address the problems of identifying listed corporates' ISRs at hand to a certain degree. Overall, results elucidate the value of the prior infraction of securities regulations (ISRs). This shows the importance of including more data sources when constructing distress models and not only focus on building increasingly more complex models on the same data. This is also beneficial to the regulatory authorities.


2020 ◽  
Vol 27 (3) ◽  
pp. 373-389 ◽  
Author(s):  
Ashesh Chattopadhyay ◽  
Pedram Hassanzadeh ◽  
Devika Subramanian

Abstract. In this paper, the performance of three machine-learning methods for predicting short-term evolution and for reproducing the long-term statistics of a multiscale spatiotemporal Lorenz 96 system is examined. The methods are an echo state network (ESN, which is a type of reservoir computing; hereafter RC–ESN), a deep feed-forward artificial neural network (ANN), and a recurrent neural network (RNN) with long short-term memory (LSTM; hereafter RNN–LSTM). This Lorenz 96 system has three tiers of nonlinearly interacting variables representing slow/large-scale (X), intermediate (Y), and fast/small-scale (Z) processes. For training or testing, only X is available; Y and Z are never known or used. We show that RC–ESN substantially outperforms ANN and RNN–LSTM for short-term predictions, e.g., accurately forecasting the chaotic trajectories for hundreds of numerical solver's time steps equivalent to several Lyapunov timescales. The RNN–LSTM outperforms ANN, and both methods show some prediction skills too. Furthermore, even after losing the trajectory, data predicted by RC–ESN and RNN–LSTM have probability density functions (pdf's) that closely match the true pdf – even at the tails. The pdf of the data predicted using ANN, however, deviates from the true pdf. Implications, caveats, and applications to data-driven and data-assisted surrogate modeling of complex nonlinear dynamical systems, such as weather and climate, are discussed.


Sign in / Sign up

Export Citation Format

Share Document