scholarly journals Vitamin D and the NLRP3 Inflammasome

2020 ◽  
Vol 10 (23) ◽  
pp. 8462
Author(s):  
Matthew Tunbridge ◽  
Pedro Henrique França Gois

Vitamin D (VD) is a steroid hormone classically known for its key role in maintaining calcium homeostasis in the body. VD also has important immunomodulatory functions. This review explores evidence for a role of VD in attenuating the activation of the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome. Dysregulated and inappropriate NLRP3 inflammasome activation occurs in a range of human diseases, including autoinflammatory disorders, metabolic disorders, and infections. VD appears to mediate its effects by binding of the VD receptor (VDR) to the sensor protein NLRP3, inhibiting deubiquitination and downstream inflammasome assembly. Some early clinical evidence suggests improved outcomes in inflammasome-mediated disorders when VD-deficient patients are treated with supplementation therapy.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Elisa Benetti ◽  
Fausto Chiazza ◽  
Nimesh S. A. Patel ◽  
Massimo Collino

The combination of obesity and type 2 diabetes is a serious health problem, which is projected to afflict 300 million people worldwide by 2020. Both clinical and translational laboratory studies have demonstrated that chronic inflammation is associated with obesity and obesity-related conditions such as insulin resistance. However, the precise etiopathogenetic mechanisms linking obesity to diabetes remain to be elucidated, and the pathways that mediate this phenomenon are not fully characterized. One of the most recently identified signaling pathways, whose activation seems to affect many metabolic disorders, is the “inflammasome,” a multiprotein complex composed of NLRP3 (nucleotide-binding domain and leucine-rich repeat protein 3), ASC (apoptosis-associated speck-like protein containing a CARD), and procaspase-1. NLRP3 inflammasome activation leads to the processing and secretion of the proinflammatory cytokines interleukin- (IL-) 1βand IL-18. The goal of this paper is to review new insights on the effects of the NLRP3 inflammasome activation in the complex mechanisms of crosstalk between different organs, for a better understanding of the role of chronic inflammation in metabolic disease pathogenesis. We will provide here a perspective on the current research on NLRP3 inflammasome, which may represent an innovative therapeutic target to reverse the detrimental metabolic consequences of the metabolic inflammation.


2020 ◽  
Author(s):  
Jianjun Jiang ◽  
Jin Yang ◽  
Yining Shi ◽  
Jiyu Cao ◽  
Youjin Lu ◽  
...  

Abstract Background: The NOD-Like Receptor Protein 3 (NLRP3) inflammasome is a crucial component of an array of inflammatory conditions. It functions by boosting the secretion of pro-inflammatory cytokines: interleukin-1β (IL-1β) and interleukin-18 (IL-18). Previous studies have established the vital role of the acid sphingomyelinase (ASM)/ceramide (Cer) pathway in the functional outcome of cells, with a particular emphasis on the inflammatory processes. This study aimed to explore the effects and associated underlying mechanism of Cer-induced NLRP3 inflammasome activation.Methods: Lipopolysaccharide (LPS)/adenosine triphosphate (ATP)-induced NLRP3 inflammasome activation in J774A.1 cells was used as an in vitro inflammatory model. Western blotting and Real-time PCR (RT-PCR) were used to detect the protein and mRNA levels, respectively. IL-1β and IL-18 levels were evaluated using ELISA kits. ASM assay kit and immunofluorescence were used to detect ASM activity and Cer content.Results: Imipramine, a well-known inhibitor of ASM, significantly inhibited ASM activity and inhibited Cer accumulation, which indicated ASM activation. Besides, it also suppressed the LPS/ATP-induced expression of proteins and mRNA: thioredoxin interacting protein (TXNIP), NLRP3, caspase-1, IL-1β and IL-18. Interestingly verapamil, a TXNIP inhibitor, suppressed LPS/ATP-induced TXNIP/NLRP3 inflammasome activation; however, it did not affect LPS/ATP-induced ASM activation and ceramide production. Further analysis showed that the exogenous C2-Cer treated J774A.1 cells induced the overexpression of TXNIP, NLRP3, caspase-1, IL-1β and IL-18. Besides, TXNIP siRNA or verapamil inhibited C2-Cer-induced TXNIP overexpression and NLRP3 inflammasome activation.Conclusion: This study demonstrated the involvement of the ASM/Cer/TXNIP signaling pathway in NLRP3 inflammasome activation.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1219 ◽  
Author(s):  
Yang Zhou ◽  
Zhizi Tong ◽  
Songhong Jiang ◽  
Wenyan Zheng ◽  
Jianjun Zhao ◽  
...  

The NLRP3 (nucleotide-binding domain, leucine-rich-repeat-containing family, pyrin domain-containing 3) inflammasome senses pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), and activates caspase-1, which provokes release of proinflammatory cytokines such as interleukin-1β (IL-1β) and IL-18 as well as pyroptosis to engage in innate immune defense. The endoplasmic reticulum (ER) is a large and dynamic endomembrane compartment, critical to cellular function of organelle networks. Recent studies have unveiled the pivotal roles of the ER in NLRP3 inflammasome activation. ER–mitochondria contact sites provide a location for NLRP3 activation, its association with ligands released from or residing in mitochondria, and rapid Ca2+ mobilization from ER stores to mitochondria. ER-stress signaling plays a critical role in NLRP3 inflammasome activation. Lipid perturbation and cholesterol trafficking to the ER activate the NLRP3 inflammasome. These findings emphasize the importance of the ER in initiation and regulation of the NLRP3 inflammasome.


2019 ◽  
Vol 118 ◽  
pp. 109217 ◽  
Author(s):  
Jinlong Wei ◽  
Heru Wang ◽  
Huanhuan Wang ◽  
Bin Wang ◽  
Lingbin Meng ◽  
...  

Blood ◽  
2019 ◽  
Vol 133 (10) ◽  
pp. 1039-1048 ◽  
Author(s):  
David A. Sallman ◽  
Alan List

Abstract In cancer biology, tumor-promoting inflammation and an inflammatory microenvironment play a vital role in disease pathogenesis. In the past decade, aberrant innate immune activation and proinflammatory signaling within the malignant clone and the bone marrow (BM) microenvironment were identified as key pathogenic drivers of myelodysplastic syndromes (MDS). In particular, S100A9-mediated NOD-like receptor protein 3 (NLRP3) inflammasome activation directs an inflammatory, lytic form of cell death termed pyroptosis that underlies many of the hallmark features of the disease. This circuit and accompanying release of other danger-associated molecular patterns expands BM myeloid-derived suppressor cells, creating a feed-forward process propagating inflammasome activation. Furthermore, somatic gene mutations of varied functional classes license the NLRP3 inflammasome to generate a common phenotype with excess reactive oxygen species generation, Wnt/β-catenin–induced proliferation, cation flux-induced cell swelling, and caspase-1 activation. Recent investigations have shown that activation of the NLRP3 inflammasome complex has more broad-reaching importance, particularly as a possible disease-specific biomarker for MDS, and, mechanistically, as a driver of cardiovascular morbidity/mortality in individuals with age-related, clonal hematopoiesis. Recognition of the mechanistic role of aberrant innate immune activation in MDS provides a new perspective for therapeutic development that could usher in a novel class of disease-modifying agents.


2019 ◽  
Vol 11 ◽  
pp. 175628721881803 ◽  
Author(s):  
Karol Borys Tudrej ◽  
Tomasz Piecha ◽  
Małgorzata Kozłowska-Wojciechowska

Although it has been proposed that NOD-like receptor protein 3 (NLRP3) inflammasome activation may have an important contribution to the onset of bladder pain syndrome/interstitial cystitis (BPS/IC), as of today there is still insufficient evidence to accept or to reject this hypothesis. However, taking into consideration that inflammasomes have been already shown as important mediators of cyclophosphamide-induced bladder inflammation and that some studies have also revealed human bladder epithelium expresses high levels of NLRP3, such a hypothesis seems to be reasonable. The purpose of this review is to discuss a scenario that NLRP3 inflammasome is a crucial player in the development of this disease. Identification of a novel mediator of bladder inflammation and pain could lead to emerging new therapeutic strategy and the first causative therapy.


2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Merry W. Ma ◽  
Jing Wang ◽  
Krishnan M. Dhandapani ◽  
Darrell W. Brann

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. After the initial primary mechanical injury, a complex secondary injury cascade involving oxidative stress and neuroinflammation follows, which may exacerbate the injury and complicate the healing process. NADPH oxidase 2 (NOX2) is a major contributor to oxidative stress in TBI pathology, and inhibition of NOX2 is neuroprotective. The NLRP3 inflammasome can become activated in response to oxidative stress, but little is known about the role of NOX2 in regulating NLRP3 inflammasome activation following TBI. In this study, we utilized NOX2 knockout mice to study the role of NOX2 in mediating NLRP3 inflammasome expression and activation following a controlled cortical impact. Expression of NLRP3 inflammasome components NLRP3 and apoptosis-associated speck-like protein containing a CARD (ASC), as well as its downstream products cleaved caspase-1 and interleukin-1β (IL-1β), was robustly increased in the injured cerebral cortex following TBI. Deletion of NOX2 attenuated the expression, assembly, and activity of the NLRP3 inflammasome via a mechanism that was associated with TXNIP, a sensor of oxidative stress. The results support the notion that NOX2-dependent inflammasome activation contributes to TBI pathology.


Sign in / Sign up

Export Citation Format

Share Document