scholarly journals A Smart Algorithm for Personalizing the Workstation in the Assembly Process

2020 ◽  
Vol 10 (23) ◽  
pp. 8624
Author(s):  
Maja Turk ◽  
Miha Pipan ◽  
Marko Simic ◽  
Niko Herakovic

Due to increasing competition in the global market and to meet the need for rapid changes in product variability, it is necessary to introduce self-configurable and smart solutions within the entire process chain, including manual assembly to ensure the more efficient and ergonomic performance of the manual assembly process. This paper presents a smart assembly system including newly developed smart manual assembly workstation controlled by a smart algorithm. The smart assembly workstation is self-configurable according to the anthropometry of the individual worker, the complexity of the assembly process, the product characteristics, and the product structure. The results obtained by a case study show that is possible to organize manual assembly process with rapid adaptation of the smart assembly system to new products and workers characteristics, to achieve ergonomic working conditions through Digital Human Modelling (DHM), to minimize assembly time, and to prevent error during the assembly process. The proposed system supports the manual assembly process redesign to ensure a better working environment and aims to have an important value for applying the smart algorithms to manual assembly workstations in human-centered manufacturing systems.

Author(s):  
Atiya Al-Zuheri ◽  
Lee Luong ◽  
Ke Xing

The newest assembly system is lean assembly, which is specifically designed to respond quickly and economically to the fluctuating nature of the market demands. Successful designs for these systems must be capable of satisfying the strategic objectives of a management in manufacturing company. An example of such systems is the so-called walking worker assembly line WWAL, in which each cross-trained worker travels along the line to carry out all tasks required to complete a job. Design approaches for this system have not been investigated in depth both of significant role in manual assembly process design; productivity and ergonomics. Therefore these approaches have had a limited success in actual applications. This chapter presents an innovative and integrated framework which offers significant potential improvement for productivity and ergonomics requirements in WWAL design. It establishes a systematic approach clearly demonstrating the implementation of a developed framework based on the simultaneous application of mathematical and meta- heuristic techniques.


2013 ◽  
Vol 309 ◽  
pp. 3-11
Author(s):  
Roman Ruzarovsky ◽  
Nina Danišová ◽  
Karol Velíšek

Development of intelligent assembly cell conception includes new solution kind of how to create structures of automated and flexible assembly system. Intelligent behavior of the system as the control system will repose on monitoring of important parameters of the system in the real time. Interaction information will be taken from flexible reaction data. This kind of flexible conception realization of intelligent assembly systems brings many advantages such as, cell will brings flexible reactions of the system to the manufacturing changes, build up area saving, lover building costs, higher using effects of whole device. This conception is developed at Institute of the manufacturing systems and applied mechanics and continues at an intermediate stage of the project. The paper is presented the description of the new conception philosophy, design of the individual units in the system characterized as an intelligent assembly cell, functions principles and expected proceedings in the next phases of the project.


2014 ◽  
Vol 592-594 ◽  
pp. 2628-2638 ◽  
Author(s):  
T.G. Arul ◽  
C. Arumugam ◽  
P. Parthiban

Lean manufacturing is a management philosophy derived from Toyota Production System (TPS) which aims to increase the overall values of the product or service provided to the customer through elimination of non-value added activities. In the era of globalisation, to remain competitive in the global market, many medium and small sized Indian industries adopt lean manufacturing. This paper focuses on implementation of lean manufacturing in Indian MSMEs. To examine the implementation, attributes which influence lean manufacturing are obtained and industries’ performances on these criteria are rated. In this paper, the methodology selected from many of the multi criteria models is the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). In the actual real world situation, because of the unreliable nature of the information gathered, the attributes are often not absolute and are imprecise. These data can be considered as fuzzy and the aim of this paper is to adopt TOPSIS decision making method to problems with fuzzy data. The rating and weights of each data are expressed as triangular fuzzy numbers. These attributes are then normalized and the TOPSIS methodology is carried out to determine the effect of implementing lean manufacturing technique in an industry. The best industry is identified by fuzzy TOPSIS on the basis of performance towards the considered attributes is consistent with results identified by TOPSIS.


2021 ◽  
Vol 11 (6) ◽  
pp. 2850
Author(s):  
Dalibor Dobrilovic ◽  
Vladimir Brtka ◽  
Zeljko Stojanov ◽  
Gordana Jotanovic ◽  
Dragan Perakovic ◽  
...  

The growing application of smart manufacturing systems and the expansion of the Industry 4.0 model have created a need for new teaching platforms for education, rapid application development, and testing. This research addresses this need with a proposal for a model of working environment monitoring in smart manufacturing, based on emerging wireless sensor technologies and the message queuing telemetry transport (MQTT) protocol. In accordance with the proposed model, a testing platform was developed. The testing platform was built on open-source hardware and software components. The testing platform was used for the validation of the model within the presented experimental environment. The results showed that the proposed model could be developed by mainly using open-source components, which can then be used to simulate different scenarios, applications, and target systems. Furthermore, the presented stable and functional platform proved to be applicable in the process of rapid prototyping, and software development for the targeted systems, as well as for student teaching as part of the engineering education process.


2000 ◽  
Author(s):  
Ming-Chyuan Lu ◽  
Elijah Kannatey-Asibu

Abstract Ramp-up is a major step in the implementation of manufacturing systems, and is even more critical in reconfigurable manufacturing systems. For a successful reduction in ramp-up time, it is essential to analyze and monitor both the overall manufacturing system and the individual machine tools/processes that comprise the system. Towards this end, we have addressed the issue of monitoring tool wear using audible sound to enable faulty conditions associated with wear to be identified during the process before the part quality gets out of specification. Audible sound generated from the cutting process is analyzed as a source for monitoring tool wear during turning, assuming adhesive wear as the predominant wear mechanism. The analysis incorporates the dynamics of the cutting process. In modeling the interaction on the flank surface, the asperities on the surfaces are represented as a trapezoidal series function with normal distribution. The effect of changing asperity height, size, spacing, and the stiffness of the asperity interaction is investigated and compared with experimental data.


2021 ◽  
Author(s):  
Rudieri Dietrich Bauer ◽  
Thiago Luiz Watambak ◽  
Salvador Sergi Agati ◽  
Marcelo da Silva Hounsell ◽  
Andre Tavares da Silva

2021 ◽  
Author(s):  
Ahmad Sobhani

This dissertation investigates the effects of human factors (HF) of the working environment on the performance of an operation system. Poor HF design of the workplace interrupts the balance of the working environment and reduces employees' overall work performance creating a substantial economic burden on organizations. This thesis focuses on integrating HF aspects into performance optimization models of the serial system. For this reason, a modeling framework has been developed for hierarchical consideration of HF consequences at the individual, workstation and system levels. The developed framework provides a road map for the three analytical phases of this PhD research. In the first analytical phase, a two-state Markov chain is developed to quantify the connection between Work-related Ill Health (WIH) risk factors (ergonomic conditions in the workplace) and employee health-state in a probabilistic way. Subsequently, an optimization model is developed to minimize the total cost of the assembly system with regard to employee health-related productivity loss. Numerical results indicate that there is between 0.5% and 8% difference in the optimal cost of the system with and without including HF effects. In the second analytical phase, a three health-state Markov chain models the connection between HF aspects of the workplace and the employees' work-related productivity and quality variations. Results show between 0.02% and 32% increase for the optimal total cost when both employee productivity and quality losses due to poor HF design of the workplace are integrated into the optimization model. In the third analytical phase, the uncertainty involved in customer demand is considered by developing a two-regime switching model, using a pentanomial lattice. The developed modeling approach investigates the effects of both work-related employee performance variation and demand behavior on the optimal cost of the serial assembly system. Results show that a prediction of the demand distribution throughout the product life cycle is necessary to reduce the over/under cost estimation of the system, due to the stochastic behavior of the demand. This research opens a new window for considering HF intervention not only as occupational health and safety but also as operation improvement method leading to design safer and more efficient systems.


2020 ◽  
Vol 34 (5) ◽  
pp. 72-77
Author(s):  
Hee-Chul Choi

This study aimed to contribute to the preparation of an action plan for the improvement of the quality of life of firefighters at the individual level by examining how the working environment as perceived by firefighters affects their quality of life. To this end, this study conducted a survey that used purposive sampling targeting 201 fire-fighting officers in Incheon. The survey results showed that of the sub-variables of the working environment of firefighters, monetary rewards, challenges, and promotion had a significant influence on the quality of life. Based on the results, this study suggested various action plans that can support the working environment and improve the quality of life of firefighters.


2021 ◽  
Vol 5 (3) ◽  
Author(s):  
Marcel Biewendt ◽  
Florian Blaschke ◽  
Arno Böhnert

The presented paper gives an overview of the most important and most common theories and concepts from the economic field of organisational change and is also enriched with quantitative publication data, which underlines the relevance of the topic. In particular, the topic presented is interwoven in an interdisciplinary way with economic psychological models, which are underpinned within the models with content from leading scholars in the field. The pace of change in companies is accelerating, as is technological change in our society. Adaptations of the corporate structure, but also of management techniques and tasks, are therefore indispensable. This includes not only the right approaches to employee motivation, but also the correct use of intrinsic and extrinsic motivational factors. Based on the hypothesis put forward by the scientist and researcher Rollinson in his book “Organisational behaviour and analysis” that managers believe motivational resources are available at all times, socio-economic and economic psychological theories are contrasted here in order to critically examine this statement. In addition, a fictitious company was created as a model for this work in order to illustrate the effects of motivational deficits in practice. In this context, the theories presented are applied to concrete problems within the model and conclusions are drawn about their influence and applicability. This led to the conclusion that motivation is a very individual challenge for each employee, which requires adapted and personalised approaches. On the other hand, the recommendations for action for supervisors in the case of motivation deficits also cannot be answered in a blanket manner, but can only be solved with the help of professional, expert-supported processing due to the economic-psychological realities of motivation. Identifying, analysing and remedying individual employee motivation deficits is, according to the authors, a problem and a challenge of great importance, especially in the context of rapidly changing ecosystems in modern companies, as motivation also influences other factors such as individual productivity. The authors therefore conclude that good motivation through the individual and customised promotion and further training of employees is an important point for achieving important corporate goals in order to remain competitive on the one hand and to create a productive and pleasant working environment on the other.


Sign in / Sign up

Export Citation Format

Share Document