scholarly journals Dynamic Energy Efficient Control of Induction Machines Using Anticipative Flux Templates

2021 ◽  
Vol 11 (6) ◽  
pp. 2878
Author(s):  
Antony Dominic ◽  
Gernot Schullerus ◽  
Martin Winter

Energy efficiency optimization techniques for steady state operation of induction machines are the state-of-the-art, and many methods have already been developed. However, many real-world industrial and electric vehicle applications cannot be considered to be in steady state operation. The focus of this contribution is on the efficiency optimization of induction machines in dynamic operation. Online dynamic operation is challenging due to the computational complexity and the required low sample times in an inverter. An offline optimization is therefore conducted to gain knowledge. Based on this offline optimal solution, a simple and easy to implement template based solution is developed. This approach aims at replicating the solution found by the offline optimization by resembling the shape and anticipative characteristics of the optimal flux trajectory. The energy efficiency improvement of the template based solution is verified by simulations and measurements on a test bench and using a real-world drive cycle scenario. For comparison, a model predictive numerical online optimization is investigated too.

2002 ◽  
Vol 216 (4) ◽  
Author(s):  
K.-P. Zeyer ◽  
M. Mangold ◽  
S. Shah ◽  
A. Kienle ◽  
Ernst-Dieter Gilles

The influence of nonlinear dynamic effects on yield is considered for consecutive-parallel reaction schemes in a single phase CSTR. In the first part, the behavior of a single uncoupled reactor is investigated. Emphasis is on the reaction dynamics and the yield of the intermediate ethanal using continuation and optimization techniques. We characterize regions of periodic, complex periodic, and chaotic oscillations. The chaotic region is reached by type III intermittency. In all cases, the global optimum yield of the intermediate is a steady state, which is unstable or stable due to the location of the stability boundary. It is found that autonomous periodic operation is only locally better than steady state operation. In the second part, different types of mass and energy coupling between two reactors are studied. The results obtained for a simple consecutive parallel reaction scheme are validated by a more detailed model of the ethanol oxidation by hydrogen peroxide under iron(III) catalysis, which can be described by an extended consecutive-parallel reaction scheme. Analogies are found with respect to the dynamics and the yield of the intermediate.


Author(s):  
Marat R. Lukmanov ◽  
◽  
Sergey L. Semin ◽  
Pavel V. Fedorov ◽  
◽  
...  

The challenges of increasing the energy efficiency of the economy as a whole and of certain production sectors in particular are a priority both in our country and abroad. As part of the energy policy of the Russian Federation to reduce the specific energy intensity of enterprises in the oil transportation system, Transneft PJSC developed and implements the energy saving and energy efficiency improvement Program. The application of energy-saving technologies allowed the company to significantly reduce operating costs and emissions of harmful substances. At the same time, further reduction of energy costs is complicated for objective reasons. The objective of this article is to present additional methods to improve the energy efficiency of oil transportation by the example of the organizational structure of Transneft. Possibilities to reduce energy costs in the organization of the operating services, planning and execution of work to eliminate defects and preparatory work for the scheduled shutdown of the pipeline, the use of pumping equipment, including pumps with variable speed drive, the use of various pipelines layouts, changing the volume of oil entering the pipeline system and increase its viscosity.


Author(s):  
Tung T. Vu ◽  
Ha Hoang Kha

In this research work, we investigate precoder designs to maximize the energy efficiency (EE) of secure multiple-input multiple-output (MIMO) systems in the presence of an eavesdropper. In general, the secure energy efficiency maximization (SEEM) problem is highly nonlinear and nonconvex and hard to be solved directly. To overcome this difficulty, we employ a branch-and-reduce-and-bound (BRB) approach to obtain the globally optimal solution. Since it is observed that the BRB algorithm suffers from highly computational cost, its globally optimal solution is importantly served as a benchmark for the performance evaluation of the suboptimal algorithms. Additionally, we also develop a low-complexity approach using the well-known zero-forcing (ZF) technique to cancel the wiretapped signal, making the design problem more amenable. Using the ZF based method, we transform the SEEM problem to a concave-convex fractional one which can be solved by applying the combination of the Dinkelbach and bisection search algorithm. Simulation results show that the ZF-based method can converge fast and obtain a sub-optimal EE performance which is closed to the optimal EE performance of the BRB method. The ZF based scheme also shows its advantages in terms of the energy efficiency in comparison with the conventional secrecy rate maximization precoder design.


Sign in / Sign up

Export Citation Format

Share Document