scholarly journals Technological Development and Application of Photo and Video Theodolites

2021 ◽  
Vol 11 (9) ◽  
pp. 3893
Author(s):  
Rinaldo Paar ◽  
Miodrag Roić ◽  
Ante Marendić ◽  
Stjepan Miletić

Theodolites are fundamental geodetic measuring instruments for all practical geodetic tasks, as well as for experimental geodetic scientific purposes. Their development has a long history. Photo and video theodolites represent the advanced development of classic theodolites. Development started in 19th century, but only in the last 15 years has commercial application been achieved in the geodetic profession. The latest development, called image-assisted total stations (IATS), is a theodolite which consists of a classic robotic total station (RTS) with integrated image sensors. It was introduced in the early 2000s. With the development of theodolites, their application became much wider; today, they can be used for structural and geo-monitoring, i.e., for the determination of static and dynamic displacements and deformations of civil engineering structures such as bridges, dams, wind turbines, and high buildings, as well as natural structures, such as mountain slopes. They can be implemented in geodetic monitoring systems, which are an integral part of engineering structural diagnosis, and they provide essential information about the current condition of the structure. This paper describes the technological development of photo and video theodolites divided into phases according to the main innovations in their development. The application of modern video theodolites (i.e., IATS) is presented through several experimental studies that were performed. The procedure of conducting measurements with this kind of instrument, as well as the analysis of acquired data and achieved results, is elaborated. Lastly, the authors conclude, according to the achieved results, that IATS can today be used for determination of quasi-static and dynamic displacements with small and high amplitudes.

2020 ◽  
Vol 10 (23) ◽  
pp. 8731
Author(s):  
Ján Erdélyi ◽  
Alojz Kopáčik ◽  
Peter Kyrinovič

Weather conditions and different operational loads often cause changes in essential parts of engineering structures, and this affects the static and dynamic behavior and reliability of these structures. Therefore, geodetic monitoring is an integral part of the diagnosis of engineering structures and provides essential information about the current state (condition) of the structure. The development of measuring instruments enables deformation analyses of engineering structures using non-conventional surveying methods. Nowadays, one of the most effective techniques for spatial data collection is terrestrial laser scanning (TLS). TLS is frequently used for data acquisition in cases where three-dimensional (3D) data with high resolution is needed. Using suitable data processing, TLS can be used for static deformation analysis of the structure being monitored. For dynamic deformation measurements (structural health monitoring) of bridge structures, ground-based radar interferometry and accelerometers are often used for vibration mode determination using spectral analysis of frequencies. This paper describes experimental deformation monitoring of structures performed using TLS and ground-based radar interferometry. The procedure of measurement, the analysis of the acquired spatial data, and the results of deformation monitoring are explained and described.


Problems when calculating reinforced concrete structures based on the concrete deformation under compression diagram, which is presented both in Russian and foreign regulatory documents on the design of concrete and reinforced concrete structures are considered. The correctness of their compliance for all classes of concrete remains very approximate, especially a significant difference occurs when using Euronorm due to the different shape and sizes of the samples. At present, there are no methodical recommendations for determining the ultimate relative deformations of concrete under axial compression and the construction of curvilinear deformation diagrams, which leads to limited experimental data and, as a result, does not make it possible to enter more detailed ultimate strain values into domestic standards. The results of experimental studies to determine the ultimate relative deformations of concrete under compression for different classes of concrete, which allowed to make analytical dependences for the evaluation of the ultimate relative deformations and description of curvilinear deformation diagrams, are presented. The article discusses various options for using the deformation model to assess the stress-strain state of the structure, it is concluded that it is necessary to use not only the finite values of the ultimate deformations, but also their intermediate values. This requires reliable diagrams "s–e” for all classes of concrete. The difficulties of measuring deformations in concrete subjected to peak load, corresponding to the prismatic strength, as well as main cracks that appeared under conditions of long-term step loading are highlighted. Variants of more accurate measurements are proposed. Development and implementation of the new standard GOST "Concretes. Methods for determination of complete diagrams" on the basis of the developed method for obtaining complete diagrams of concrete deformation under compression for the evaluation of ultimate deformability of concrete under compression are necessary.


2020 ◽  
Vol 13 (2) ◽  
pp. 105-109
Author(s):  
E. S. Dremicheva

This paper presents a method of sorption using peat for elimination of emergency spills of crude oil and petroleum products and the possibility of energy use of oil-saturated peat. The results of assessment of the sorbent capacity of peat are presented, with waste motor oil and diesel fuel chosen as petroleum products. Natural peat has been found to possess sorption properties in relation to petroleum products. The sorbent capacity of peat can be observed from the first minutes of contact with motor oil and diesel fuel, and significantly depends on their viscosity. For the evaluation of thermal properties of peat saturated with petroleum products, experimental studies have been conducted on determination of moisture and ash content of as-fired fuel. It is shown that adsorbed oil increases the moisture and ash content of peat in comparison with the initial sample. Therefore, when intended for energy use, peat saturated with petroleum products is to be subjected to additional drying. Simulation of net calorific value has been performed based on the calorific values of peat and petroleum products with different ratios of petroleum product content in peat and for a saturated peat sample. The obtained results are compared with those of experiments conducted in a calorimetric bomb and recalculated for net calorific value. A satisfactory discrepancy is obtained, which amounts to about 12%. Options have been considered providing for combustion of saturated peat as fuel (burnt per se and combined with a solid fuel) and processing it to produce liquid, gaseous and solid fuels. Peat can be used to solve environmental problems of elimination of emergency spills of crude oil and petroleum products and as an additional resource in solving the problem of finding affordable energy.


Author(s):  
Evgeniya Mikhailovna Popova ◽  
Guzel Mukhtarovna Guseinova ◽  
Sergei Borisovich Milov

The deficit of subnational budgets and deceleration capital investments in multiple Russian regions increase the relevance of research aimed at improvement of tax incentivizing practice of the regional investment process. The studies focused on determination of the impact of socioeconomic and institutional factors upon the efficiency of investment tax expenses obtained wide circulation within the foreign scientific literature. The subject of this article is the assessment of sensitivity of the efficiency of regional tax expanses towards investment attractiveness of the types of economic activity carried out by the residents of territories of advanced socioeconomic development, created in the subjects of Far Easter Federal District. The scientific novelty and practical values of this research consists in substantiation of the reasonableness of assessment of investment attractiveness of the types of economic activity that are stimulated by tax incentives. Methodology for assessing investment attractiveness is proposed and tested. The conclusion is made that in case of low investment attractiveness of the type of economic activity, which was planned to support by tax incentives, it is required to conduct and additional analysis to avoid unjustified tax expanses.


2020 ◽  
Vol 92 (6) ◽  
pp. 13-25
Author(s):  
Vl.I. KOLCHUNOV ◽  
◽  
A.I. DEMYANOV ◽  
M.M. MIHAILOV ◽  
◽  
...  

The article offers a method and program for experimental studies of reinforced concrete structures with cross-shaped spatial crack under torsion with bending, the main purpose of which is to check the design assumptions and experimental determination of the design parameters of the proposed calculation method. The conducted experimental studies provide an opportunity to test the proposed calculation apparatus and clarify the regularities for determining deflections, angles of rotation of extreme sections, and stresses in the compressed zone of concrete. For analysis, the article presents a typical experimental scheme for the formation and development of cracks in the form of a sweep, as well as characteristic graphs of the dependence of the angles of rotation of end sections.


2018 ◽  
pp. 76-84
Author(s):  
K. V. Sorokin ◽  
E. A. Sunarchina

Improvement of orbits precision is one of the most important tasks of space surveillance catalogue maintenance. The solution of this problem is directly related to an adequate consideration of the errors of the coordinate information from the measuring instruments. The article consideresd a new method for estimating the precision of measuring instruments on the catalog orbits. To carry out such analysis, in PJSC «VIMPEL» special technological program was created. Main results of a study of radar errors with orbits of space surveillance catalogue was presented. Also, the results were compared with data of measuring instrument's calibration software complex. This software complex provides determination of satellite's position with errors less than 10 m. A new dynamic model of measuring instrument errors is proposed.


2001 ◽  
Vol 68 (6) ◽  
pp. 937-943 ◽  
Author(s):  
K. Bearden ◽  
J. W. Dally ◽  
R. J. Sanford

Since the pioneering discussion by Irwin, a significant effort has been devoted to determining stress intensity factors (K) using experimental methods. Techniques have been developed to determine stress intensity factors from photoelastic, strain gage, caustics, and moire´ data. All of these methods apply to a relatively long single-ended-edge crack. To date, the determination of K for internal cracks that are double-ended by experimental methods has not been addressed. This paper describes a photoelastic study of tension panels with both central and eccentric internal cracks. The data recorded in the experiments was analyzed using a new series solution for the opening-mode stress intensity factor for an internal crack. The data was also analyzed using the edge-crack series solution, which is currently employed in experimental studies. Results indicated that the experimental methods usually provided results accurate to within three to five percent if the series solution for the internal crack was employed in an overdeterministic numerical analysis of the data. Comparison of experimental results using the new series for the internal crack and the series for an edge crack showed the superiority of the new series.


Author(s):  
S.V. Matsenko ◽  
◽  
V.M. Minko ◽  
A.A. Koshelev ◽  
V.Yu. Piven ◽  
...  

Violation of industrial safety rules during the operation of offshore facilities for the production, storage and transportation of the hydrocarbon raw materials leads in the most cases to pollution of the marine environment with oil and its components. The works on localization and elimination of such pollution are carried out with the help of vessels of the technical support fleet and booms. When developing oil spill response plans at such facilities, a calculated determination of the technical characteristics of vessels and booms is required that are sufficient to carry out the planned activities. The basic design principles for determining the towing capacity of the technical fleet vessels involved in the localization and elimination of oil and oil product spills by trawling methods are given in the article. The calculation is based on theoretical studies performed by the authors of the physical processes occurring during the movement of objects of a mobile trawling order in the sea area. The results obtained during the course of theoretical studies were confirmed by the experimental studies carried out by the authors personally using the real pieces of equipment in the actual development of tasks for training spill containment by trawling. As a result, the empirical dependencies were obtained and experimentally confirmed, which can be used to calculate technical characteristics of the ships as part of the mobile orders and anchor systems as part of stationary orders intended for the localization and elimination of oil pollution. These results can be used, among other things, for the calculated substantiation of the technical characteristics of the technical fleet vessels designed to ensure safety of the offshore facilities for production, storage, and transportation of the hydrocarbon raw materials.


Sign in / Sign up

Export Citation Format

Share Document