scholarly journals Joint Properties of Aluminum Alloy and Galvanized Steel by AC Pulse MIG Braze Welding

2021 ◽  
Vol 11 (11) ◽  
pp. 5105
Author(s):  
Chan-Seung Ro ◽  
Kyoung-Hak Kim ◽  
Hee-Seon Bang ◽  
Hye-Seul Yoon

In response to global environment and fuel efficiency regulations aiming to reduce CO2 emissions, multi-material structures that use lightweight materials are currently being developed to realize the weight reduction of vehicles in automotive manufacturing. The dissimilar welding of aluminum alloy to steel has great importance, but it is still challenging due to their widely varying thermo-physical properties and the formation of intermetallic compounds. This study aimed to investigate the effect of process parameters on the wettability, mechanical properties, and microstructure in AC Pulse MIG welded joints of AA6061-T6 and galvanized steel sheets. A parametric study on torch aiming position and welding current with EN ratio variation was performed to optimize the process parameters. The result showed that the amount of metal deposition increased with EN ratio. When the EN ratio was higher, the wire feeding speed increased and the heat input process lowered. Moreover, the wetting length increased, ranging from 6.6 to 8.4 mm, and the wetting angle increased from 31.2 to 67.6°, respectively. As a result of the tensile shear test, the maximum tensile shear load of dissimilar welded joints produced at 70 A with a 20% EN ratio was approximately 8.8 kN. From the result of scanning electron microscopy with energy-dispersive spectrometry, FeAl3 IMC was observed at the joint interface, and the IMC layer thickness decreased with EN ratio at 70 A.

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 561
Author(s):  
Seong Min Hong ◽  
Shinichi Tashiro ◽  
Hee-Seon Bang ◽  
Manabu Tanaka

In joining aluminum alloy to galvanized (GI) steel, the huge gap of thermophysical properties, defects by zinc from the steel surface, and formation of excessive brittle Fe-Al intermetallics (IMC) are the main factors that deteriorate the joint quality. In this study, alternating current pulse gas metal arc welding (AC pulse GMAW) was suggested as a solution with a mix of electrode positive and negative modes. A 1.2 mm thick AA5052 aluminum alloy and GI steel plates were joined using 1.2 mm diameter AA4047 filler wire. A comparative study on the joint interface was conducted varying the welding current and electrode-negative (EN) ratio to investigate the effect of different welding parameters on the growth of the Fe-Al intermetallics (IMC) layer, the effect of zinc, and the mechanical characteristics of the joints. It was confirmed that the change of polarity affects the distribution of zinc element in the joints. An increase in the EN ratio suppressed the growth of the IMC layer to 3.59 μm with decreased heat input. The maximum tensile-shear strength of the welded joints was approximately 171 MPa (78% joint efficiency) at the welding current of 50 A with 20% EN ratio.


2017 ◽  
Vol 904 ◽  
pp. 19-23
Author(s):  
Van Nhat Nguyen ◽  
Quoc Manh Nguyen ◽  
Dang Thi Huong Thao ◽  
Shyh Chour Huang

Welding dissimilar materials has been widely applied in industries. Some of them are considered this as a strategy to develop their future technology products. Aluminum alloy and stainless steel have differences in physical, thermal, mechanical and metallurgic properties. However, selecting a suitable welding process and welding rods can solve this problem. This research aimed to investigate the T-joint welding between A6061 aluminum alloy and SUS304 stainless steel using new welding rods, Aluma-Steel by the Tungsten Inert Gas (TIG) welding process. The mechanical properties, the characteristics of microstructure, and component analysis of the welds have been investigated by the mechanical testing, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). As a result, the fracture occurred at the adjacent area between welding seam and A6061 alloys plate. The thermal cracking appeared at central welding-seam along the base metals if high welding current. A large amount of copper elements found in the welds due to using the new welding rod, Aluma-Steel rod.


2015 ◽  
Vol 819 ◽  
pp. 45-49 ◽  
Author(s):  
Shamsul Baharin Jamaludin ◽  
Mohd Zahir Abd Latif ◽  
Mohd Noor Mazlee ◽  
Kamarudin Hussin

The effect of welding current on the joining of mild steel and aluminum 6063 has been investigated. The joining was carried using a tungsten inert gas (TIG) welding. The welding currents used were 30 A to 80 A. The formation of intermetallic reaction layers (IML) and tensile shear strength of the joining were investigated. The result showed that tensile shear strength increased as welding current increased up to 55 A. Microstructural analysis showed that intermetallic reaction layer was formed at the interface between steel and aluminum alloy during welding process. The thickness of IML was decreased with decreasing welding current.


2019 ◽  
Vol 11 (08) ◽  
pp. 1950077 ◽  
Author(s):  
Guanglong Cao ◽  
Cheng Huang ◽  
Tong Li ◽  
Yahui Zhang ◽  
Mingfa Ren

The mechanical performances of welded joints under bi-axial loading are significant to the reliability of various engineering structures. However, the protocol for the mechanical characterization of welded joints still needs to be improved to represent the mechanical performances of welded joints under complex loading conditions. In this work, an experimental design is proposed for the mechanical characterization of 2219 aluminum alloy welded joints. The target is to investigate the effects of combined tensile-shear load on the mechanical responses and failure behavior of 2219 aluminum alloy welded joints. The tensile-shear characterization was then conducted using a newly developed U-notch aluminum alloy welded joints specimen. In addition, standard tensile test and standard shear test were conducted to validate of the U-notch specimen design. This newly proposed experimental protocol is suitable to obtain mechanical properties of 2219 aluminum alloy welded joints subjected to tensile-shear load.


2013 ◽  
Vol 795 ◽  
pp. 87-90 ◽  
Author(s):  
Shamsul Baharin Jamaludin ◽  
Mohd Noor Mazlee ◽  
Muhammad Rifki Ismail ◽  
Khairel Rafezi Ahmad ◽  
Kamarudin Hussin

Studies on the effects of welding current and cycles were carried on the galvanized steel sheets using spot welding. The welding currents used were 3 kA, 5 kA 6 kA and the welding cycles were 4, 6 and 8. Tensile shear and tensile peel load were determined on the joint of welded specimens. The results showed that the value of tensile shear load was lower than tensile peel load. The strength of the joint increased with the increasing of welding current and welding cycle used in the welding process.


Author(s):  
Jefferson Lima ◽  
Oclávio Coutinho dos santos ◽  
Amós Figueirêdo ◽  
Raphael Henrique Falcão de Melo ◽  
Theophilo Maciel

Sign in / Sign up

Export Citation Format

Share Document