scholarly journals Asynchrony Drives Plant and Animal Community Stability in Mediterranean Coastal Dunes

2021 ◽  
Vol 11 (13) ◽  
pp. 6214
Author(s):  
Tania L.F. Bird ◽  
Pua Bar (Kutiel) ◽  
Elli Groner ◽  
Amos Bouskila

Substantial evidence now suggests that a positive diversity–stability relationship exists. Yet few studies examine the facets of biodiversity that contribute to this relationship, and empirical research is predominantly conducted on grassland communities under controlled conditions. We investigate the roles of species richness, environmental condition (vegetation cover), asynchrony, and weighted population stability in driving community stability across multiple taxa. We used data from a Long-term Ecological Research project to investigate temporal stability of annual plants, beetles, reptiles, and rodents in Nizzanim Coastal Sand Dune Nature Reserve in Israel. All four taxa had a strong positive relationship between asynchrony and community stability. Only rodents showed a positive richness–stability relationship. Perennial plant cover had a significant relationship with community stability for three taxa, but the direction of the correlation varied. Asynchrony had a stronger relationship with perennial plant cover than it did with richness for both plants and beetles. We suggest that community stability is driven by asynchrony for flora as well as fauna. Stability appears to be determined by species’ interactions and their responses to the environment, and not always by diversity. This has important consequences for understanding the effects of environmental degradation on ecosystem stability and productivity, which have destabilizing consequences beyond biodiversity loss.

Author(s):  
Felipe Rezende ◽  
Pablo Antiqueira ◽  
Owen Petchey ◽  
Luiz Velho ◽  
Luzia Rodrigues ◽  
...  

Theory and some evidence suggest that biodiversity promotes stability. However, evidence of how trophic interactions and environmental changes modulate this relationship in multitrophic communities is lacking. Given the current scenario of biodiversity loss and climate changes, where top predators are disproportionately more affected, filling these knowledge gaps is crucial. We simulated climate warming and top predator loss in natural microcosms to investigate their direct and indirect effects on temporal stability of microbial communites. We also investigated the role of underlying stabilizing mechanisms on community stability. Community stability was insensitive to warming, but indirectly decreased due to top predator loss via increased mesopredator abundance and consequent reduction of species asynchrony and stability. The magnitude of destabilizing effects differed among trophic levels, being disproportionally higher at lower trophic levels (e.g. producers). Our study unravels major patterns and causal mechanisms by which trophic downgrading destabilizes large food webs, regardless of climate warming scenarios.


Author(s):  
Mark Vellend

This chapter highlights the scale dependence of biodiversity change over time and its consequences for arguments about the instrumental value of biodiversity. While biodiversity is in decline on a global scale, the temporal trends on regional and local scales include cases of biodiversity increase, no change, and decline. Environmental change, anthropogenic or otherwise, causes both local extirpation and colonization of species, and thus turnover in species composition, but not necessarily declines in biodiversity. In some situations, such as plants at the regional scale, human-mediated colonizations have greatly outnumbered extinctions, thus causing a marked increase in species richness. Since the potential influence of biodiversity on ecosystem function and services is mediated to a large degree by local or neighborhood species interactions, these results challenge the generality of the argument that biodiversity loss is putting at risk the ecosystem service benefits people receive from nature.


2019 ◽  
Vol 23 (6) ◽  
pp. 1093-1103 ◽  
Author(s):  
Irene Delgado-Fernandez ◽  
Robin G. D. Davidson-Arnott ◽  
Patrick A. Hesp

Abstract Coastal dunes are experiencing increases in vegetation cover and reduced mobility levels in many sites around the world. Ecology-led approaches to coastal dune management perceive this change as ‘undesirable’ because the increase in plant cover leads to a reduction in partially vegetated to bare sand habitats and the species depending on them. This has generated a shift in the management paradigm where the objective is to revert this trend by intervening in the landscape, with actions ranging from re-introducing grazing and mowing, to mechanical removal of dune form and vegetation (dune ‘rejuvenation’). In some cases, such as many coastal dunes in Britain, this has also led to low controls on visitor pressure and allowing/promoting human trampling as a ‘natural’ way to free up areas of bare sand. This commentary critically analyses the main principles (and terminology) underlying this relatively recent shift in management paradigm, and questions assumptions such as ‘bare sand is good’ and/or ‘mobility is natural’ in the context of dune evolutionary cycles and responses to abiotic and biotic drivers. We review the limitations and dangers of this approach and argue that it is not sustainable given the current climatic and environmental conditions, and that it can increase the risk of coastal erosion and force dune systems to deviate from adapting and changing to direct/indirect drivers. Finally, we present the benefits of a management approach that focuses on minimizing human impacts so that natural processes continue to occur.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Nico Blüthgen ◽  
Nadja K. Simons ◽  
Kirsten Jung ◽  
Daniel Prati ◽  
Swen C. Renner ◽  
...  

2019 ◽  
Author(s):  
Monica Granados ◽  
Katie S. Pagnucco ◽  
Anthony Ricciardi

AbstractFood web stability, a fundamental characteristic of ecosystems, is influenced by the nature and strength of species interactions. Theory posits that food webs are stabilized by omnivory and disrupted by novel consumers.To test the effects of secondary consumer origin and trophic level on basal resource stability, we constructed crayfish-snail-algae modules using four congeneric species of crayfish (Faxonius spp.), two from native populations (F. propinquus and F. virilis) and two from non-native populations (F. limosus and F. rusticus). We performed surgical manipulations of crayfish feeding structures to create omnivore food web and predator food chain modules. We compared the temporal stability of these modules using measures of the coefficient of variation of the basal resource (benthic algae).Consistent with theoretical and empirical predictions, food web modules with omnivory had the lowest coefficient of variation. However, contrary to prediction, we did not find consistently higher coefficients of variation in modules with non-native species. Rather, across species, we found the lowest coefficient of variation in modules with one of the non-native species (F. rusticus) and one native species (F. virilis), owing to stronger interactions between these crayfish species and their snail and algal food resources.The results suggest that omnivory is indeed stabilizing and that very weak interactions or very low attack rates of the consumer on the basal resource can be unstable. Thus, we demonstrate that omnivores may have different impacts than predators when introduced into a novel ecosystem, differences that can supersede the effect of species identity.


2021 ◽  
Author(s):  
Steven M. Grodsky ◽  
Rebecca R. Hernandez

<p>Deserts are prioritized as recipient environments for solar energy development; however, the impacts of this development on desert plant communities are unknown. Desert plants represent long-standing ecological, economic and cultural resources for humans, especially indigenous peoples, but their role in supplying ecosystem services (ESs) remains understudied. We measured the effect of solar energy development decisions on desert plants at one of the world’s largest concentrating solar power plants (Ivanpah, California; capacity of 392 MW). We documented the negative effects of solar energy development on the desert scrub plant community. Perennial plant cover and structure are lower in bladed treatments than mowed treatments, which are, in turn, lower than the perennial plant cover and structure recorded in undeveloped controls. We determined that cacti species and Mojave yucca (Yucca schidigera) are particularly vulnerable to solar development (that is, blading, mowing), whereas Schismus spp.—invasive annual grasses—are facilitated by blading. The desert scrub community confers 188 instances of ESs, including cultural services to 18 Native American ethnic groups. Cultural, provisioning and regulating ESs of desert plants are lower in bladed and mowed treatments than in undeveloped controls. Our study demonstrates the potential for solar energy development in deserts to reduce biodiversity and socioecological resources, as well as the role that ESs play in informing energy transitions that are sustainable and just.</p>


2021 ◽  
Author(s):  
Lisa Buche ◽  
Juerg W Spaak ◽  
Javier Jarillo Diaz ◽  
Frederik de Laender

Understanding how species interactions affect community composition is an important objective in ecology. Yet, the multitude of methods to study coexistence has hampered cross-community comparisons. Here, we standardized niche and fitness differences across 1018 species pairs to compare the processes driving composition and outcomes, among four community types (annual plant, perennial plant, phytoplankton, and bacteria/yeast). First, we show that niche differences are more important drivers of coexistence than fitness differences. Second, in all community types negative frequency dependence is the most frequent process. Finally, the outcome of species interactions differs among community types. Coexistence was the most frequent outcome for perennial plants and phytoplankton, while competitive exclusion was the most prevalent outcome in annual plants and bacteria/yeasts. Overall, our results show that niche and fitness differences can be used as a common currency that allow cross community comparisons to understand species coexistence.


2017 ◽  
Vol 27 (14) ◽  
pp. 2177-2184.e4 ◽  
Author(s):  
Ivan Nagelkerken ◽  
Silvan U. Goldenberg ◽  
Camilo M. Ferreira ◽  
Bayden D. Russell ◽  
Sean D. Connell

2013 ◽  
Vol 280 (1768) ◽  
pp. 20131548 ◽  
Author(s):  
Patrick A. Venail ◽  
Markos A. Alexandrou ◽  
Todd H. Oakley ◽  
Bradley J. Cardinale

The impact of biodiversity on the stability of ecological communities has been debated among biologists for more than a century. Recently summarized empirical evidence suggests that biodiversity tends to enhance the temporal stability of community-level properties such as biomass; however, the underlying mechanisms driving this relationship remain poorly understood. Here, we report the results of a microcosm study in which we used simplified systems of freshwater microalgae to explore how the phylogenetic relatedness of species influences the temporal stability of community biomass by altering the nature of their competitive interactions. We show that combinations of two species that are more evolutionarily divergent tend to have lower temporal stability of biomass. In part, this is due to negative ‘selection effects’ in which bicultures composed of distantly related species are more likely to contain strong competitors that achieve low biomass. In addition, bicultures of distantly related species had on average weaker competitive interactions, which reduced compensatory dynamics and decreased the stability of community biomass. Our results demonstrate that evolutionary history plays a key role in controlling the mechanisms, which give rise to diversity–stability relationships. As such, patterns of shared ancestry may help us predict the ecosystem-level consequences of biodiversity loss.


2013 ◽  
Vol 22 (6) ◽  
pp. 815 ◽  
Author(s):  
Christopher M. Herron ◽  
Jayne L. Jonas ◽  
Paul J. Meiman ◽  
Mark W. Paschke

Increasing fire frequencies and uncharacteristic severe fires have created a need for improved restoration methods across rangelands in western North America. Traditional restoration seed mixtures of native perennial mid- to late-seral plant species may not be suitable for intensely burned sites that have been returned to an early-seral condition. Under such conditions, native annual plant species are likely to be more successful at becoming established and competing with exotic annual plant species, such as Bromus tectorum L., for resources. We used a field study in Colorado and Idaho, USA, to test the hypothesis that native annual plant species are better suited to post-fire restoration efforts compared with perennial plant species that are commonly used in traditional seed mixtures. Replicated test plots at three post-fire sites were assigned one of four treatments: (1) native annual seed mixture, (2) standard perennial seed mixture, (3) combination of annual and perennial and (4) an unseeded control. Seeding native annuals with perennials resulted in a slight reduction in exotic plant cover, suggesting that it is potentially beneficial to include native annual plant species in restoration seed mixtures.


Sign in / Sign up

Export Citation Format

Share Document