scholarly journals Dynamic Analysis Method for Fault Propagation Behaviour of Machining Centres

2021 ◽  
Vol 11 (14) ◽  
pp. 6525
Author(s):  
Liming Mu ◽  
Yingzhi Zhang ◽  
Jintong Liu ◽  
Fenli Zhai ◽  
Jie Song

Fault propagation behaviour analysis is the basis of fault diagnosis and health maintenance. Traditional fault propagation studies are mostly based on a priori knowledge of a causality model combined with rule-based reasoning, disregarding the limitations of experience and the dynamic characteristics of the system that cause deviations in the identification of critical fault sources. Thus, this paper proposes a dynamic analysis method for fault propagation behaviour of machining centres that combines fault propagation mechanisms with model structure characteristics. This paper uses the design structure matrix (DSM) to establish the fault propagation hierarchy structure model. Considering the correlation of fault time, the fault probability function of a component is obtained and the fault influence degree of nodes are calculated. By introducing the Copula and Coupling degree functions, the fault influence degree of the edges between the same level and different levels are calculated, respectively. This paper constructs a fault propagation intensity model by integrating the edge betweenness and uses it as an index to analyze real-time fault propagation behaviour. Finally, a certain type of machining centre is taken as an example for specific application. This study can provide as a reference for the fault maintenance and reliability growth of a machining centre.

2011 ◽  
Vol 131 (2) ◽  
pp. 166-170 ◽  
Author(s):  
Yoshihiro Nakata ◽  
Hiroshi Ishiguro ◽  
Katsuhiro Hirata

2011 ◽  
Vol 199-200 ◽  
pp. 251-256
Author(s):  
Kai An Yu ◽  
Ke Yu Chen

Based on requirements of pipe transport systems on deepwater pipelaying vessel, a new pipe lifting mechanism was designed. It was composed of crank-rocker and rocker-slider mechanism with good lifting capacity and high efficiency. When the slider went to the upper limit position, the mechanism could approximatively dwell, meeting the requirement for transverse conveyor operation. According to the theory of dynamics, numerical analysis method was used to the dynamic analysis of the mechanism. The results showed the maximum counterforce was at the joint between the rocker and ground, and this calculation could be a guideline for the kinematic pair structure designing.


Author(s):  
Apiwat Reungwetwattana ◽  
Shigeki Toyama

Abstract This paper presents an efficient extension of Rosenthal’s order-n algorithm for multibody systems containing closed loops. Closed topological loops are handled by cut joint technique. Violation of the kinematic constraint equations of cut joints is corrected by Baumgarte’s constraint violation stabilization method. A reliable approach for selecting the parameters used in the constraint stabilization method is proposed. Dynamic analysis of a slider crank mechanism is carried out to demonstrate efficiency of the proposed method.


2002 ◽  
Vol 31 (4) ◽  
pp. 201-213 ◽  
Author(s):  
Abdelfatah Bouziani

We prove the existence, uniqueness, and the continuous dependence of a generalized solution upon the data of certain parabolic and hyperbolic equations with a boundary integral condition. The proof uses a functional analysis method based on a priori estimates established in nonclassical function spaces, and on the density of the range of the linear operator associated to the abstract formulation of the studied problem.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tong Lin ◽  
Sainan Lyu ◽  
Rebecca Jing Yang ◽  
Linda Tivendale

PurposePrefabricated housing has become a boom industry across the world; however, the uptake of offsite construction (OSC) approaches in Australian low-rise buildings is rather low compared with high-rise buildings in other countries. This study aims to investigate and analyse the adoption of different levels of OSC approaches and the selection of different procurement options in Australian low-rise residential buildings.Design/methodology/approachThe research objectives were pursued through a mixed research method. An empirical questionnaire survey was carried out with 35 professionals in the Australian building and construction industry. Semi-structured interviews were conducted with 20 interviewees and analysed using thematic analysis method in NVivo software.FindingsThe research results found that the most suitable OSC level for Australian low-rise buildings is components-based prefabrication and identified the barriers to OSC uptake for each OSC level. The study also showed that the best option of procuring prefabricated products is from Australian manufacturers, followed by Australian suppliers/dealers and overseas manufacturers. Panelised prefabrication and components-based prefabrication are ranked as the most suitable OSC approaches for Australian manufacturers. Modular prefabrication is regarded as the most suitable for overseas manufacturer, while components-based prefabrication is the most suitable for Australian suppliers/dealers.Originality/valueThe selection of various OSC approaches and different procurement options in the low-rise residential buildings are scarcely explored topic, and thus, this study provides knowledge of interest for both researchers and practitioners.


1967 ◽  
Vol 4 (04) ◽  
pp. 331-354
Author(s):  
R. L. Harrington ◽  
W. S. Vorus

A description and evaluation of the dynamic analysis method of determining the shock resistance of shipboard equipment is given. Development of equipment mathematical models is treated in detail, and the computational procedures used in conducting dynamic analyses are illustrated. Considerations in the preparation of dynamic-analysis reports are discussed. Discussers R. S. Adelizzi G. W. Bishop V. T. Boatwright K. J. Calvin C. Dotson Capt. H. C. Field, Jr., USND. W. Ginter O. Gould D. M. Gray K. Gyswyt R. T. Hawley RADM L. V. Honsinger, USN(Ret.) C. Lee J. C. Lester C. Li W. A. Littlejohn N. J. Monroe A. Morrone B. Novak E. W. Palmer C. G. Puffenburger L. L. Salter H.M. Schauer J. R. Sullivan J. D. Swannack C. Y. Tiao H. H. Ward W. P. Welch J. B. Woodward, III


Sign in / Sign up

Export Citation Format

Share Document