scholarly journals On the Mechanical and Electrical Properties of the Composite Structure of PVC Membrane and Thin-Film Battery under Biaxial Tension

2021 ◽  
Vol 11 (15) ◽  
pp. 6830
Author(s):  
Jingwei Ying ◽  
Junzhou Huang ◽  
Shengkun Qin ◽  
Yijie Huang

This paper aims to study the mechanical and electrical properties of the composite structure of PVC film and film cell under biaxial tension. The saddle PVC membrane structure with thin-film battery was obtained by biaxial tensile tests carried out on the composite structure along the fiber direction and at an angle of 45 degrees to the fiber, respectively. The deformation of the film cell and PVC membrane materials was tested using digital image technology, and the voltage of the film cell was tested using a multimeter. The results showed that the tensile strain occurred in both membrane batteries and PVC membrane at different loading levels, and the former was always less than the latter. At a tensile load with the ultimate load ratio of 60%, it was only at the film cell’s outer edge that the stripping occurred. Under the illumination of a stable light source, the film cell voltage decreased gradually with the increasing tensile load. No more than 10% of the cell voltage drop occurred when the membrane material, the principal tensile strain of the cell, and the cell’s expansion area ratio were less than 3.1%, 2.8%, and 1.03, respectively. The experimental results show that the film cell can be applied to the saddle membrane structure by controlling the appropriate load.

Author(s):  
E. L. Vigil ◽  
E. F. Erbe

In cotton seeds the radicle has 12% moisture content which makes it possible to prepare freeze-fracture replicas without fixation or cryoprotection. For this study we have examined replicas of unfixed radicle tissue fractured at room temperature to obtain data on organelle and membrane structure.Excised radicles from seeds of cotton (Gossyplum hirsutum L. M-8) were fractured at room temperature along the longitudinal axis. The fracture was initiated by spliting the basal end of the excised radicle with a razor. This procedure produced a fracture through the tissue along an unknown fracture plane. The warm fractured radicle halves were placed on a thin film of 100% glycerol on a flat brass cap with fracture surface up. The cap was rapidly plunged into liquid nitrogen and transferred to a freeze- etch unit. The sample was etched for 3 min at -95°C to remove any condensed water vapor and then cooled to -150°C for platinum/carbon evaporation.


1995 ◽  
Vol 155 (1-2) ◽  
pp. 81-92 ◽  
Author(s):  
Mark W. Verbrugge ◽  
Donn W. Glander ◽  
Daniel R. Baker
Keyword(s):  

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1970 ◽  
Author(s):  
Donghyeon Ryu ◽  
Alfred Mongare

In this study, a flexible strain sensor is devised using corrugated bilayer thin films consisting of poly(3-hexylthiophene) (P3HT) and poly(3,4-ethylenedioxythiophene)-polystyrene(sulfonate) (PEDOT:PSS). In previous studies, the P3HT-based photoactive non-corrugated thin film was shown to generate direct current (DC) under broadband light, and the generated DC voltage varied with applied tensile strain. Yet, the mechanical resiliency and strain sensing range of the P3HT-based thin film strain sensor were limited due to brittle non-corrugated thin film constituents. To address this issue, it is aimed to design a mechanically resilient strain sensor using corrugated thin film constituents. Buckling is induced to form corrugation in the thin films by applying pre-strain to the substrate, where the thin films are deposited, and releasing the pre-strain afterwards. It is known that corrugated thin film constituents exhibit different optical and electronic properties from non-corrugated ones. Therefore, to design the flexible strain sensor, it was studied to understand how the applied pre-strain and thickness of the PEDOT:PSS conductive thin film affects the optical and electrical properties. In addition, strain effect was investigated on the optical and electrical properties of the corrugated thin film constituents. Finally, flexible strain sensors are fabricated by following the design guideline, which is suggested from the studies on the corrugated thin film constituents, and the DC voltage strain sensing capability of the flexible strain sensors was validated. As a result, the flexible strain sensor exhibited a tensile strain sensing range up to 5% at a frequency up to 15 Hz with a maximum gauge factor ~7.


2018 ◽  
Vol 53 ◽  
pp. 01008
Author(s):  
Feihu Tan ◽  
XiaoPing Liang ◽  
Feng Wei ◽  
Jun Du

The amorphous LiPON thin film was obtained by using the crystalline Li3PO4 target and the RF magnetron sputtering method at a N2 working pressure of 1 Pa. and then the morphology and composition of LiPON thin films are analysed by SEM and EDS. SEM shows that the film was compact and smooth, while EDS shows that the content of N in LiPON thin film was about 17.47%. The electrochemical properties of Pt/LiPON/Pt were analysed by EIS, and the ionic conductivity of LiPON thin films was 3.8×10-7 S/cm. By using the hard mask in the magnetron sputtering process, the all-solid-state thin film battery with Si/Ti/Pt/LiCoO2/LiPON/Li4Ti5O12/Pt structure was prepared, and its electrical properties were studied. As for this thin film battery, the open circuit voltage was 1.9 V and the first discharge specific capacity was 34.7 μAh/cm2·μm at a current density of 5 μA/cm-2, indicating that is promising in all-solidstate thin film batteries.


HardwareX ◽  
2017 ◽  
Vol 2 ◽  
pp. 34-49 ◽  
Author(s):  
Thomas Dobbelaere ◽  
Philippe M. Vereecken ◽  
Christophe Detavernier
Keyword(s):  

2017 ◽  
Vol 5 (14) ◽  
pp. 6432-6436 ◽  
Author(s):  
Tucker M. McFarlane ◽  
Jamie A. Shetzline ◽  
Stephen Creager ◽  
Christopher F. Huebner ◽  
Chip Tonkin ◽  
...  

A pressure activated battery was created using a modified alkaline battery chemistry in conjunction with fish roe that served as the electrolyte storage and ion-permeable separator.


2001 ◽  
Vol 40 (Part 1, No. 9A) ◽  
pp. 5382-5388 ◽  
Author(s):  
Yongdong Liu ◽  
Seiichi Hata ◽  
Kouichi Wada ◽  
Akira Shimokohbe

Sign in / Sign up

Export Citation Format

Share Document