scholarly journals The Effect of Oxygen Admixture with Argon Discharges on the Impact Parameters of Atmospheric Pressure Plasma Jet Characteristics

2021 ◽  
Vol 11 (15) ◽  
pp. 6870
Author(s):  
Atif H. Asghar ◽  
Ahmed Rida Galaly

Dry argon (Ar) discharge and wet oxygen/argon (O2/Ar) admixture discharge for alternating current atmospheric pressure plasma jets (APPJs) were studied for Ar discharges with flow rates ranging from 0.2 to 4 slm and for O2/Ar discharges with different O2 ratios and flow rates ranging from 2.5 to 15 mslm. The voltage–current waveform signals of APPJ discharge, gas flow rate, photo-imaging of the plasma jet length and width, discharge plasma power, axial temperature distribution, optical emission spectra, and irradiance were investigated. Different behavior for varying oxygen content in the admixture discharge was observed. The temperature recognizably decreased, axially, far away from the nozzle of the jet as the flow rate of dry argon decreased. Similar behavior was observed for wet argon but with a lower temperature than for dry argon. The optical emission spectra and the dose rate of irradiance of a plasma jet discharge were investigated as a function of plasma jet length, for dry and wet Ar discharges, to determine the data compatible with the International Commission on Non-Ionizing Radiation Protection (ICNIRP) data for irradiance exposure limits of the skin, which are suitable for the disinfection of microbes on the skin without harmful effects, equivalent to 30 μJ/mm2.

2019 ◽  
Vol 1 (1) ◽  
pp. 46-52
Author(s):  
Vasu D ◽  
Raji A ◽  
Pandiyaraj K.N ◽  
Padmanabhan P.V.A ◽  
Kandhavelu V

In this study we investigate the degradation of telmisartan (Telma-H) in simulated aqueous solution using non-thermal atmospheric pressure plasma jet (APPJ). Aqueous solution containing Telma-H was treated with APPJ as a function of applied potential and reaction time. The degradation of Telma-H was investigated by means of UV-Visible spectroscopy. Optical emission spectra (OES) of the plasma jet was used to identify the reactive species that contributed to degrade Telma H compounds. The variation of pH and conductivity of the plasma treated Telma H aqueous solution was also measured.


2021 ◽  
Vol 19 (48) ◽  
pp. 44-51
Author(s):  
Saba Jawad Kadhem

     In this manuscript has investigated the synthesis of plasma-polymerized pyrrole (C4H5N) nano-particles prepared by the proposed atmospheric pressure nonequilibrium plasma jet through the parametric studies, particularly gas flow rate (0.5, 1 and 1.5 L/min). The plasma jet which used operates with alternating voltage 7.5kv and frequency 28kHz. The plasma-flow characteristics were investigated based on optical emission spectroscopy (OES). UV-Vis spectroscopy was used to characterize the  oxidization  state for polypyrrole. The major absorption appears around 464.1, 449.7 and 435.3  nm at the three flow rate of argon gas. The chemical composition and structural properties of the contained samples which synthesized at 0.5 L/min as a argon flow rate were analyzed by scanning electron microscopy (SEM), Fourier transformation infrared spectroscopy (FTIR), Raman spectroscopy and X-ray diffraction (XRD). SEM point to a uniform distribution of polypyrrole (PPY) nanoparticles matrix. XRD technique showed a semicrystalline pattern for PPY)thin film. It is expected, that the high-quality plasma polymer grown by atmospheric pressure plasma jet method contributes to serving as conducting materials.


2012 ◽  
Vol 78 (6) ◽  
pp. 617-620
Author(s):  
YUAN ZHONG-CAI ◽  
SHI JIA-MING ◽  
CHEN ZONG-SHENG ◽  
XU BO

AbstractAn atmospheric pressure plasma jet is generated with a cold arc discharge in ambient air. The current-voltage characteristics and optical emission spectra of plasma discharges are investigated. The molecular nitrogen (N2), hydroxyl radical (OH), and oxygen atom (O) are observed and analyzed. Based on the best fit of the simulated spectra of N2 (C3∏u+ − B3∏g+) band and OH (A2∑+ − X2∏) band transition and the experimentally recorded spectra, the rotational temperature and the vibrational temperature of atmospheric pressure cold arc plasma jet (APCAPJ) are estimated.


Plasma ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 283-293 ◽  
Author(s):  
Bolouki ◽  
Hsieh ◽  
Li ◽  
Yang

A helium-based atmospheric pressure plasma jet (APPJ) with various flow rates of argon gas as a variable working gas was characterized by utilizing optical emission spectroscopy (OES) alongside the plasma jet. The spectroscopic characterization was performed through plasma exposure in direct and indirect interaction with and without de-ionized (DI) water. The electron density and electron temperature, which were estimated by Stark broadening of atomic hydrogen (486.1 nm) and the Boltzmann plot, were investigated as a function of the flow rate of argon gas. The spectra obtained by OES indicate that the hydroxyl concentrations reached a maximum value in the case of direct interaction with DI water as well as upstream of the plasma jet for all cases. The relative intensities of hydroxyl were optimized by changing the flow rate of argon gas.


Sign in / Sign up

Export Citation Format

Share Document