scholarly journals Life Cycle Assessment of Mortars Produced Partially Replacing Cement by Treated Mining Residues

2021 ◽  
Vol 11 (17) ◽  
pp. 7947
Author(s):  
Joana Almeida ◽  
Paulina Faria ◽  
Alexandra Branco Ribeiro ◽  
António Santos Silva

The use of secondary mining resources to replace conventional constituents in mortars production has proved the effectiveness to preserve the quality of mechanical, physical, and chemical properties. However, minimal research has been performed to quantify the environmental impacts of mortars with mining residues. In the present work, a life cycle assessment of 10 mortars was carried out. A reference mortar (100% of cement binder) and mortars with cement substitutions in 10, 25, and 50% by raw, electrodialytic treated, and electrodialytic plus thermal treated mining residues were analysed. The impacts were studied in six environmental categories: (1) abiotic depletion; (2) global warming; (3) ozone depletion; (4) photochemical ozone creation; (5) acidification; and (6) eutrophication potentials. The results demonstrated that mortars formulated with raw mining residues may decrease the environmental impacts, namely in global warming potential (55.1 kg CO2 eq./t modified mortar). Considering the treatments applied to mining residues, the major mitigations were reported in photochemical ozone creation (−99%), ozone depletion (−76 to −98%), and acidification potential (−90 to −94%), mainly due to the disposal impacts avoided in comparison to the reference mortar. Analysing all mortars’ constituents and their management options, products with electrodialytic treated mining residues showed higher influence in ozone depletion (18 to 52%). Coupling a thermal procedure, mining residues contributed for 99% of the abiotic depletion potential of mortars.

2020 ◽  
Vol 12 (15) ◽  
pp. 6079 ◽  
Author(s):  
Jesse Sherry ◽  
Jennifer Koester

Salmon aquaculture has grown rapidly and is expected to continue to grow to meet consumer demand. Due to concerns about the environmental impacts associated with salmon aquaculture, eco-labeling groups have developed standards intended to hold salmon producers accountable and provide a more sustainable option to consumers. This study utilized life cycle assessment (LCA) to quantify the environmental impacts of salmon raised to Aquaculture Stewardship Council (ASC) certification standards in order to determine if ASC certification achieves the intended reductions in impact. We find that environmental impacts, such as global warming potential, do not decrease with certification. We also find that salmon feed, in contrast to the on-site aquaculture practices, dominates the environmental impacts of salmon aquaculture and contributes to over 80% of impacts in ozone depletion, global warming potential, acidification, and ecotoxicity. Based on these findings, we recommend that eco-labeling groups prioritize reducing the environmental impacts of the feed supply chain.


2021 ◽  
Vol 13 (5) ◽  
pp. 2525
Author(s):  
Camila López-Eccher ◽  
Elizabeth Garrido-Ramírez ◽  
Iván Franchi-Arzola ◽  
Edmundo Muñoz

The aim of this study is to assess the environmental impacts of household life cycles in Santiago, Chile, by household income level. The assessment considered scenarios associated with environmental policies. The life cycle assessment was cradle-to-grave, and the functional unit considered all the materials and energy required to meet an inhabitant’s needs for one year (1 inh/year). Using SimaPro 9.1 software, the Recipe Midpoint (H) methodology was used. The impact categories selected were global warming, fine particulate matter formation, terrestrial acidification, freshwater eutrophication, freshwater ecotoxicity, mineral resource scarcity, and fossil resource scarcity. The inventory was carried out through the application of 300 household surveys and secondary information. The main environmental sources of households were determined to be food consumption, transport, and electricity. Food consumption is the main source, responsible for 33% of the environmental impacts on global warming, 69% on terrestrial acidification, and 29% on freshwater eutrophication. The second most crucial environmental hotspot is private transport, whose contribution to environmental impact increases as household income rises, while public transport impact increases in the opposite direction. In this sense, both positive and negative environmental effects can be generated by policies. Therefore, life-cycle environmental impacts, the synergy between policies, and households’ socio-economic characteristics must be considered in public policy planning and consumer decisions.


2018 ◽  
Vol 77 (9) ◽  
pp. 2292-2300 ◽  
Author(s):  
Karina Cubas do Amaral ◽  
Miguel Mansur Aisse ◽  
Gustavo Rafael Collere Possetti ◽  
Marcelo Real Prado

Abstract Upflow anaerobic sludge blanket (UASB) reactors used in sewage treatment generate two by-products that can be reused: sludge and biogas. At the present time in Brazil, most of this resulting sludge is disposed of in sanitary landfills, while biogas is commonly burned off in low-efficiency flares. The aim of the present study was to use life cycle assessment to evaluate the environmental impacts from four different treatment and final destination scenarios for the main by-products of wastewater treatment plants. The baseline scenario, in which the sludge was sanitized using prolonged alkaline stabilization and, subsequently, directed toward agricultural applications and the biogas destroyed in open burners, had the most impact in the categories of global warming, terrestrial ecotoxicity, and human non-carcinogenic toxicity. The scenario in which heat resulting from biogas combustion is used to dry the sludge showed significant improvements over the baseline scenario in all the evaluated impact categories. The recovery of heat from biogas combustion decreased significantly the environmental impact associated with global warming. The combustion of dried sludge is another alternative to improve the sludge management. Despite the reduction of sludge volume to ash, there are environmental impacts inherent to ozone formation and terrestrial acidification.


2019 ◽  
Vol 25 (3) ◽  
pp. 456-477 ◽  
Author(s):  
Heini Elomaa ◽  
Pia Sinisalo ◽  
Lotta Rintala ◽  
Jari Aromaa ◽  
Mari Lundström

Abstract Purpose Currently, almost all cyanide-free gold leaching processes are still in the development stage. Proactively investigating their environmental impacts prior to commercialization is of utmost importance. In this study, a detailed refractory gold concentrate process simulation with mass and energy balance was built for state-of-the-art technology with (i) pressure oxidation followed by cyanidation and, compared to alternative cyanide-free technology, with (ii) pressure oxidation followed by halogen leaching. Subsequently, the simulated mass balance was used as life cycle inventory data in order to evaluate the environmental impacts of the predominant cyanidation process and a cyanide-free alternative. Methods The environmental indicators for each scenario are based on the mass balance produced with HSC Sim steady-state simulation. The simulated mass balances were evaluated to identify the challenges in used technologies. The HSC Sim software is compatible with the GaBi LCA software, where LCI data from HSC-Sim is directly exported to. The simulation produces a consistent life cycle inventory (LCI). In GaBi LCA software, the environmental indicators of global warming potential (GWP), acidification potential (AP), terrestrial eutrophication potential (EP), and water depletion (Water) are estimated. Results and discussion The life cycle assessment revealed that the GWP for cyanidation was 10.1 t CO2-e/kg Au, whereas the halogen process indicated a slightly higher GWP of 12.6 t CO2-e/kg Au. The difference is partially explained by the fact that the footprint is calculated against produced units of Au; total recovery by the halogen leaching route for gold was only 87.3%, whereas the cyanidation route could extract as much as 98.5% of gold. The addition of a second gold recovery unit to extract gold also from the washing water in the halogen process increased gold recovery up to 98.5%, decreasing the GWP of the halogen process to 11.5 t CO2-e/kg Au. However, both evaluated halogen processing scenarios indicated a slightly higher global warming potential when compared to the dominating cyanidation technology. Conclusions The estimated environmental impacts predict that the development-stage cyanide-free process still has some challenges compared to cyanidation; as in the investigated scenarios, the environmental impacts were generally higher for halogen leaching. Further process improvements, for example in the form of decreased moisture in the feed for halide leaching, and the adaptation of in situ gold recovery practices in chloride leaching may give the cyanide-free processing options a competitive edge.


Buildings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 54
Author(s):  
Amir Oladazimi ◽  
Saeed Mansour ◽  
Seyed Abbas Hosseinijou

Given the fact that during the recent years the majority of buildings in Iran have been constructed either on steel or concrete frames, it is essential to investigate the environmental impacts of materials used in such constructions. For this purpose, two multi-story residential buildings in Tehran with a similar function have been considered in this study. One building was constructed with a steel frame and the other was constructed with a concrete frame. Using the life cycle assessment tool, a complete analysis of all the stages of a building’s life cycle from raw material acquisition to demolition and recycling of wastes was carried out. In this research, the environmental impacts included global warming potential in 100 years, acidification, eutrophication potential, human toxicity (cancer and non-cancer effects), resource depletion (water and mineral), climate change, fossil fuel consumption, air acidification and biotoxicity. It could be concluded from the results that the total pollution of the concrete frame in all eleven aforementioned impact factors was almost 219,000 tonnes higher than that of the steel frame. Moreover, based on the results, the concrete frame had poorer performance in all but one impact factor. With respect to global warming potential, the findings indicated there were two types of organic and non-organic gases that had an impact on global warming. Among non-organic emissions, CO2 had the biggest contribution to global warming potential, while among organic emissions, methane was the top contributor. These findings suggest the use of steel frames in the building industry in Iran to prevent further environmental damage; however, in the future, more research studies in this area are needed to completely investigate all aspects of decision on the choice of building frames, including economic and social aspects.


1998 ◽  
Vol 38 (11) ◽  
pp. 23-30 ◽  
Author(s):  
F. J. Dennison ◽  
A. Azapagic ◽  
R. Clift ◽  
J. S. Colbourne

This paper presents the preliminary results of a Life Cycle Assessment (LCA) study comparing different wastewater treatment works, operated by Thames Water Utilities Ltd. in the UK. Fifteen works have been studied, representing a range of size and type of treatment works. Five management regimes for centralising sludge treatment and disposal were analyzed in the context of LCA to provide guidance on choosing the best practicable environmental option (BPEO). Consideration of Global warming potential indicates that the four proposed management regimes with centralisation of sludge for treatment and disposal, as adopted by Thames Water Utilities Ltd., is an environmental improvement upon the current practice. One of these options, that of complete centralisation and composting of sludge prior to disposal, exerts the least environmental impact with respect to Global warming potential. This suggests that the adoption of composting at Crawley is environmentally preferable to increasing the digestion facility at this works.


2021 ◽  
Vol 896 (1) ◽  
pp. 012050
Author(s):  
I P Sari ◽  
W Kuniawan ◽  
F L Sia

Abstract Tofu is one of the processed soybean foods that are very popular with Indonesian society. Despite the popularity of Tofu, Tofu production in Indonesia is generally small and medium, reaching 500 kg per day, as in the tofu factory in Semanan, West Jakarta. The purpose of this study is to analyze the environmental impact of tofu production in West Jakarta. The life cycle assessment (LCA) approach was used to achieve this goal with SimaPro software for impact calculations. This research applies the LCA cradle to gate, which consists of soybean cultivation, transportation, and tofu production processes. The environmental impacts of tofu production analyzed in this study include global warming, ozone depletion, acidification, and eutrophication. The impact analysis showed that the acquisition of soybeans, which consisted of soybean cultivation and transportation, had the most significant environmental impact with a global warming potential value of 0.882 kg CO2 eq out of a total of 0.978 CO2 eq for the whole process.


Eksergi ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 7 ◽  
Author(s):  
Rifkah Akmalina

A life cycle assessment (LCA) has been performed on sorbitol production from glucose, which aims to quantify and evaluate the environmental impacts that produced from the process. SuperPro Designer software was employed to perform the process simulation, while SimaPro was used to quantify the LCA.Potency of global warming, acidification, eutrophication, photochemical oxidants creation, abiotic depletion, and ozone layer depletion were evaluated. A gate-to-gate LCA study of sorbitol production showed that global warming potential (GWP) had the largest impact to environment with the value of 3.551 kg CO2 eq/kg sorbitol. Glucose and electricity consumption were known as two major contributors to GWP, and hydrogen reactor was the main consumer of electricity. The use of glucose were responsible for more than 50% of total environmentalimpact in each category. Performing heat integration in sorbitol processing is highly recommended for gate-togate system to reduce energy demand, thus decreasing the environmental impacts. Therefore, this LCA study may be applied to perform a sustainable improvement on sorbitol production process.Keywords: sorbitol; life cycle assessment; global warming potential


Rekayasa ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 197-204
Author(s):  
Marudut Sirait

Tujuan dari makalah ini adalah untuk mengidentifikasi potensi dampak lingkungan selama proses produksi gula tebu di Jawa Timur Indonesia. Studi ini menggunakan pendekatan Life Cycle Assesment (LCA) untuk mengevaluasi dampak  lingkungan selama proses produksi gula dari tebu. Analisis LCA fokus pada pengolahan tebu menjadi gula, yang terdiri dari proses persiapan, proses miling, centrifugal separation, proses clarification, proses evaporation, dan proses crystalization. Hasil Life Cycle Impact Assessment (LCIA) diekpresikan dengan metode EDIB 2003, menunjukkan bahwa dampak lingkungan yang paling signifikan terhadap penurunan kualitas lingkungan adalah  global warming, acidification, eutrofikasi, human toxicity air, dan ozone depletion. Selanjutnya, proses produksi gula yang paling besar kontribusnya pada dampak lingkungan adalah proses penggilingan/miling, diikuti oleh proses centrifugal seperation,proses clarification, proses crystallization,proses evaporation, dan proses preperation untuk semua kategori dampak lingkungan.Life Cycle Assessment Study of Sugarcane: The case of East JavaABSTRACTThe purpose of this paper is to identify potential environmental impacts during the process of sugarcane production in East Java, Indonesia. This study utilized Life Cycle Assessment (LCA) approach to evaluate the environmental impact during the manufacturing of sugar cane. LCA analysis focuses on processing sugarcane, which consists of the preparation process, the milling process, centrifugal separation, the clarification process, the evaporation process, and the crystalization process. The Life Cycle Impact Assessment (LCIA) was expressed by the EDIB 2003 method. The result showed that the most significant environmental impacts on environmental degradation were global warming, acidification, eutrophication, human toxicity of water, and ozone depletion. Furthermore, the production process with the greatest contribution to environmental impact were the miling process, followed by centrifugal seperation process, clarification process, crystallization process, evaporation process, and preperation process for all categories of environmental impacts.Keywords: Environmental Impact, Energy, Sugarcane, Global Warming, Life Cycle Assessment


Sign in / Sign up

Export Citation Format

Share Document