scholarly journals Production of Arthrospira (Spirulina) platensis Enriched in β-Glucans through Phosphorus Limitation

2021 ◽  
Vol 11 (17) ◽  
pp. 8121
Author(s):  
Giorgos Markou ◽  
Christos Eliopoulos ◽  
Anthoula Argyri ◽  
Dimitrios Arapoglou

(1) Background: Arthrospira (commonly known as Spirulina) is an edible cyanobacterium that is produced worldwide as a food supplement owing to its high nutritional value. Arthrospira displays strong potential as an important ingredient in the development of novel functional foods. Polysaccharides from Arthrospira are biologically active compounds and hence there is interest in producing biomass rich in carbohydrates. (2) Methods: A. platensis was cultivated under different degrees of phosphorus limitation in order to trigger the accumulation of carbohydrates. The biomass was then characterized in terms of its content of α- and β-glucans, total dietary fiber and monosaccharide profile. Fourier-transform infrared spectroscopy (FTIR) was used for the rapid analysis of the main biomass components. (3) Results: Phosphorus limitation resulted in an increase in carbohydrates (from 23% up to 65% dry biomass) of which 4–12% (in relation to the dry biomass) was α-glucans and 20–34% was 1.3:1.6 β-glucans, while 1.4:1.6 β-glucans were not detected. Total dietary fibers ranged from 20–32% (of dry biomass), whereas among the carbohydrates, the predominant monosaccharide was glucose (>95%). FTIR performed well when applied as a prediction tool for the main biomass components. (4) Conclusions: Since β-glucans are of particular interest as biologically active compounds, this study demonstrates that phosphorus-limited A. platensis could be a potential ingredient for the development of novel functional foods.

2019 ◽  
Vol 3 (3) ◽  
pp. 7-16 ◽  
Author(s):  
Monica Butnariu ◽  
Ioan Sarac

The notion that foods have health promotion effects beyond their nutritional value has been increasingly accepted in recent years, and the specific effects of nutrition prevention on disease have led to the discovery of functional foods. Functional foods are products that contain various biologically active compounds and which, consumed in a current diet, contribute to maintaining the optimal state of physical, mental and mental health of the population. Functional foods are consumed in the normal diet and contain biologically active compounds with potential to improve health or to reduce the risk of disease. The objectives of this review are to highlight the strengths of functional foods.


2012 ◽  
Vol 554-556 ◽  
pp. 1709-1712
Author(s):  
Yun Yun Xu ◽  
Tao Zhang ◽  
Lei Chen ◽  
Zhen Rong Lin ◽  
Xiao Yu Ge

Microalgae are a biochemically diverse assemblage of microorganisms amenable to fermentation and mass culture.Most of these microalgae species produce unique products like carotenoids,antioxidants,fatty acids,enzymes,polymers,peptides,toxins and sterols.Microalgae might become economic sources of new drugs,other specialty chemicals and functional foods because production can be optimized in controlled culture.This paper introduced the biologically active compounds from microalgae and its health function,studies of microalgae in human nutrition and new trends in microalgae food,researched on microalgal health food,and the development of information was provided.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3178
Author(s):  
Joanna Ślusarczyk ◽  
Edyta Adamska ◽  
Joanna Czerwik-Marcinkowska

Many species of fungi including lichenized fungi (lichens) and algae have the ability to biosynthesize biologically active compounds. They produce, among others, polysaccharides with anticancer and immunostimulatory properties: (1) Background: This paper presents the characteristics of the most important bioactive compounds produced by fungi and algae; (2) Methods: Based on the example of the selected species of mushrooms, lichens and algae, the therapeutic properties of the secondary metabolites that they produce and the possibilities of their use are presented; (3) Results: The importance of fungi, especially large-fruited mushrooms, lichens and algae, in nature and human life is discussed, in particular, with regard to their use in the pharmaceutical industry and their nutritional value; (4) Conclusions: The natural organisms, such as fungi, lichenized fungi and algae, could be used as supplementary medicine, in the form of pharmaceutical preparations and food sources. Further advanced studies are required on the pharmacological properties and bioactive compounds of these organisms.


2005 ◽  
Vol 67 (1-2) ◽  
pp. 205-214 ◽  
Author(s):  
Stella M. Alzamora ◽  
Daniela Salvatori ◽  
María S. Tapia ◽  
Aurelio López-Malo ◽  
Jorge Welti-Chanes ◽  
...  

2018 ◽  
Author(s):  
Honggui Lv ◽  
Li-Jun Xiao ◽  
Dongbing Zhao ◽  
Qi-Lin Zhou

Herein, we realized the first linear-selective hydroarylation of unactivated alkenes and styrenes with organoboronic acids by introducing directing groupon alkenes. Our method is highly efficient and scalable, and provides a modular route to assemble structurally diverse alkylarenes, especially for γ-aryl butyric acid derivatives, which have been widely utilized as chemical feedstocks to access multiple marketed drugs, and biologically active compounds.<br>


2020 ◽  
Vol 5 (443) ◽  
pp. 85-91
Author(s):  
Ibrayev M.K., ◽  
◽  
Takibayeva A.T., ◽  
Fazylov S.D., ◽  
Rakhimberlinova Zh.B., ◽  
...  

This article presents studies on the targeted search for new derivatives of azoles, such as benzthiazole, 3,5-dimethylpyrazole, 1,3,4-oxadiazole-2-thione, 1,3,4-thiadiazole. The possibility of combining in one molecule of the azole ring with other cyclic compounds: the alkaloid cytisine, morpholine, furan and some arenes has been studied. To obtain new compounds, the reactions of bromination, acylation, and interaction with isothiocyanates were studied. Optimal synthesis conditions were studied for all reactions. It was found that the reaction of 4-bromo-3,5-dimethylpyrazole with isothiocyanates, in contrast to the previously written derivatives of anilines, takes a longer time and requires heating the reaction mixture. The combination of a pirasol fragment with halide substituents often results in an enhanced therapeutic effect. The synthesized 2-bromine-N-(6-rodanbenzo[d]thiazole-2-yl)acetamide, due to the alkylbromide group, is an important synth in the synthesis of new benzthiazole derivatives. Its derivatives combine in one molecule the rest of rhodanbenzthiazole with alkaloid cytisine and biogenic amine morpholine and are potentially biologically active compounds, since the molecule structure contains several pharmacophoric fragments: benzthiazole and alkaloid (amine) heterocycles, rhodane and urea groups. The mechanism of formation of 1,3,4-oxadiazole-2-tyons from hydrazides under action on them by carbon disulfide was studied and assumed. It was shown that dithiocarbamates in acidic medium decompose with the release of hydrogen sulfide and the formation of highly reactive isothiocyanate group. Then, intra-molecular cyclization occurs, with the formation of end products - 1,3,4-oxadiazole-2-thions. The structures of the synthesized compounds were studied by 1H and 13C NMR spectroscopy. All synthesized substances are potentially biologically active compounds, since they contain several pharmacophore fragments in their structure.


2020 ◽  
Vol 27 (6) ◽  
pp. 838-853 ◽  
Author(s):  
Madalina Icriverzi ◽  
Valentina Dinca ◽  
Magdalena Moisei ◽  
Robert W. Evans ◽  
Mihaela Trif ◽  
...  

: Among the multiple properties exhibited by lactoferrin (Lf), its involvement in bone regeneration processes is of great interest at the present time. A series of in vitro and in vivo studies have revealed the ability of Lf to promote survival, proliferation and differentiation of osteoblast cells and to inhibit bone resorption mediated by osteoclasts. Although the mechanism underlying the action of Lf in bone cells is still not fully elucidated, it has been shown that its mode of action leading to the survival of osteoblasts is complemented by its mitogenic effect. Activation of several signalling pathways and gene expression, in an LRPdependent or independent manner, has been identified. Unlike the effects on osteoblasts, the action on osteoclasts is different, with Lf leading to a total arrest of osteoclastogenesis. : Due to the positive effect of Lf on osteoblasts, the potential use of Lf alone or in combination with different biologically active compounds in bone tissue regeneration and the treatment of bone diseases is of great interest. Since the bioavailability of Lf in vivo is poor, a nanotechnology- based strategy to improve the biological properties of Lf was developed. The investigated formulations include incorporation of Lf into collagen membranes, gelatin hydrogel, liposomes, loading onto nanofibers, porous microspheres, or coating onto silica/titan based implants. Lf has also been coupled with other biologically active compounds such as biomimetic hydroxyapatite, in order to improve the efficacy of biomaterials used in the regulation of bone homeostasis. : This review aims to provide an up-to-date review of research on the involvement of Lf in bone growth and healing and on its use as a potential therapeutic factor in bone tissue regeneration.


Author(s):  
Neha V. Bhilare ◽  
Pratibha B. Auti ◽  
Vinayak S. Marulkar ◽  
Vilas J. Pise

: Thiophenes are one among the abundantly found heterocyclic ring systems in many biologically active compounds. Moreover various substituted thiophenes exert numerous pharmacological actions on account of their isosteric resemblance with compounds of natural origin thus rendering them with diverse actions like antibacterial, antifungal, antiviral, anti-inflammatory, analgesic, antiallergic, hypotensives etc.. In this review we specifically explore the chemotherapeutic potential of variety of structures consisting of thiophene scaffolds as prospective anticancer agents.


Sign in / Sign up

Export Citation Format

Share Document