scholarly journals Model Test Study on Stability Factors of Expansive Soil Slopes with Different Initial Slope Ratios under Freeze-Thaw Conditions

2021 ◽  
Vol 11 (18) ◽  
pp. 8480
Author(s):  
Zhongnian Yang ◽  
Jianhang Lv ◽  
Wei Shi ◽  
Qi Zhang ◽  
Zhaochi Lu ◽  
...  

Expansive soil is widely distributed in seasonally frozen areas worldwide. Due to the special expansion and shrinkage characteristics of expansive soil related to water content, there are potential engineering disasters in the subgrade and slope engineering. To investigate the physical and mechanical changes within the expansive soil slope, four freeze-thaw cycles tests were performed on expansive soil slope models in an environmental chamber with slope ratios 1:1.5, 1:1 and 1:0.5. Nuclear magnetic resonance (NMR) technology is used to explain the pore changes in expansive soil during freezing and thawing. Model tests were carried out to monitor the changes in cracks, moisture content, temperature, displacement and soil pressure of the slope model. The results show an increase in the slope ratio may give rise to more intense temperature changes, promote the development of cracks in the model, and increase the temperature gradient and moisture migration rate during freezing and thawing. Following freeze-thaw cycling, the soil structure is destroyed and reassembled, and the soil pressure decreases as the slope ratio increases. Combined with the displacement of slope model and NMR test results, the slope can maintain a stable state after multiple freezing–thawing cycles under a specific moisture content ωs.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhongnian Yang ◽  
Jianhang Lv ◽  
Wei Shi ◽  
Chao Jia ◽  
Chu Wang ◽  
...  

AbstractThis paper presents an experimental investigation on the effect of freeze–thaw cycling on expansive soil slopes with different initial moisture contents. Clay soil from Weifang, China, was remolded and selected to build the expansive soil slope for the indoor slope model tests. A total of five freeze–thaw cycles were applied to the three expansive soil slopes with different moisture contents ranging from 20 to 40%. Variations of the crack developments, displacements, soil pressures and moisture contents of the expansive soil slope with different initial moisture contents during the freeze–thaw cycling were reported and discussed. The results indicate that higher moisture contents can slow the development of cracks and that the soil pressure increases with decreasing temperature. The soil pressure of slope decreases after freeze–thaw cycle, and the change amplitude of soil pressure after freeze–thaw is proportional to water content. The slopes with a moisture content of 20% and 30% shrinks during freezing and expands during thawing, which was named ES-FSTE Model, while the slope with a 40% moisture content shows the opposite behavior. During freeze–thaw cycles, moisture migrates to slope surface. As initial moisture contents increase, the soil heat transfer rate and bearing capacity decreases after five freeze–thaw cycling.


1988 ◽  
Vol 68 (3) ◽  
pp. 485-494 ◽  
Author(s):  
S. PAWLUK

Repeated freezing and thawing of glacial till cores of clay loam texture results in the formation of granic and metafragmic microfabrics. These units of fabric are best developed near the surface of cores kept at moisture levels between field capacity and saturation. Well-sorted lacustrine sediments with fewer voids tend to form banded fabrics. Many of the morphological features such as vesicles, metavughs and desiccation cracks commonly attributed to freeze-thaw processes are evident in all materials tested. Discrete units of fabric observed in this study are very similar to units of fabric observed in the Ah horizons of Black Chernozemic and Cryosolic soils. Results of this investigation strongly support earlier research which suggests that frost processes are major contributors to their microstructural development. Key words: Granic, freeze-thaw, microfabrics


1996 ◽  
Vol 33 (4) ◽  
pp. 529-537 ◽  
Author(s):  
K D Eigenbrod

Soft, fine-grained soils were exposed to cyclic one-dimensional, open-system freezing and thawing, resulting in maximum volume changes of up to 30%, depending on the initial moisture content and plasticity of the clay as well as on the rate of freezing. A linear relationship between the net volume changes subsequent to freezing and thawing and the liquidity index prior to freezing and thawing was obtained. This correlation is not unique, but depends on rate and mode of freezing. Thus, settlements from freeze–thaw consolidation in the field can be predicted from such tests if the rate and mode of freezing are the same as in the field. During cyclic freezing and thawing the soils became fissured and jointed, resulting for most clays in large increases in their bulk permeabilities, which increased with an increasing number of freeze–thaw cycles, often by more than two orders of magnitude. For some materials, however, little change in permeability occured. Key words: cyclic freeze–thaw, clays, freeze–thaw consolidation, permeability, volume changes.


2021 ◽  
Vol 13 (3) ◽  
pp. 1292
Author(s):  
Liu Xinchun ◽  
Kang Yongde ◽  
Chen Hongna ◽  
Lu Hui

The Taklimakan Desert, also known as the “Sea of Death”, is the largest desert in China and also the world’s second largest remote desert. The road crossing the Taklimakan Desert is the longest desert road in the world and has been the center of the Silk Road since ancient times. Based on field observation data (November 2013 to May 2014) collected from the Tazhong and Xiaotang stations, we studied the interannual and diurnal variations of soil temperature, soil moisture content, and surface heat fluxes during different freezing and thawing periods. The annual and daily changes of soil temperature, soil moisture content, and surface energy fluxes at different freezing and thawing stages were analyzed. We illustrated the coupling relationship between water and heat in freezing-thawing soil in the Taklimakan Desert. We established a coupling model of soil water and heat during freezing and thawing. During the soil freezing period, the soil temperatures at different depths generally trended downward. The temperature difference between the Tazhong station and the Xiaotang station was 4~8.5 °C. The freezing time of soil at 20 cm depth occurred about 11 days after that at 10 cm depth. The effect of ambient temperature on soil temperature gradually weakened with the increase of soil depth. With the occurrence of the soil freezing process, the initial soil moisture contents at 5 cm, 10 cm, 20 cm, and 40 cm depths at the Xiaotang station were 6%, 10%, 29%, and 59%, respectively, and those at the Tazhong station were 5%, 3.6%, 4.4%, and 5.8%, respectively. As the ambient temperature decreased, the freezing front continued to move downward and the liquid soil water content at each depth decreased. The desert highway is closely related to the economic development and prosperity of southern Xinjiang. Therefore, it is important to maintain and inspect the safety and applicability of freeze-thaw zones and avoid casualties from vehicles and personnel.


2013 ◽  
Vol 838-841 ◽  
pp. 821-824
Author(s):  
Qi Yong You

The main reason of expansive soil embankment slope landslide is the infiltration of rainwater. Analyzing engineering characteristics and failure mechanism of expansive soil embankment slope, considering the force of expansion under the infiltration of rainwater, and choosing the appropriate constitutive model, simulate expansive soil embankment slope under humidification state. According different conditions of the expansive soil and different depth of infiltration, and simplifying the swelling force, establish a simple and reasonable model of expansion force changes. Expansive soil embankment slope stability is mainly affected by the moisture of expansive soil slope after analyzing the calculation results. The safety of expansive soil slope after immersion in rainwater decreases significantly. It shows designers should choose reasonable slope ratio and consider the embankment slope protection and drainage measures.


2021 ◽  
Vol 14 (7) ◽  
Author(s):  
Chao Liang ◽  
Zhijian Wu ◽  
Xinfu Liu ◽  
Zhaomei Xiong ◽  
Tao Li

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Huren Rong ◽  
Jingyu Gu ◽  
Miren Rong ◽  
Hong Liu ◽  
Jiayao Zhang ◽  
...  

In order to study the damage characteristics of the yellow sandstone containing pores under the freeze-thaw cycle, the uniaxial compression test of saturated water-stained yellow sandstones with different freeze-thaw cycles was carried out by rock servo press, the microstructure was qualitatively analyzed by Zeiss 508 stereo microscope, and the microdamage mechanism was quantitatively studied by using specific surface area and pore size analyzer. The mechanism of weakening mechanical properties of single-hole yellow sandstone was expounded from the perspective of microstructure. The results show the following. (1) The number of freeze-thaw cycles and single-pore diameter have significant effects on the strength and elastic modulus of the yellow sandstone; the more the freeze-thaw cycles and the larger the pore size, the lower the strength of the yellow sandstone. (2) The damage modes of the yellow sandstone containing pores under the freeze-thaw cycle are divided into five types, and the yellow sandstone with pores is divided into two areas: the periphery of the hole and the distance from the hole; as the number of freeze-thaw cycles increases, different regions show different microscopic damage patterns. (3) The damage degree of yellow sandstone is different with freeze-thaw cycle and pore size. Freeze-thaw not only affects the mechanical properties of yellow sandstone but also accelerates the damage process of pores. (4) The damage of the yellow sandstone by freeze-thaw is logarithmic function, and the damage of the yellow sandstone is a power function. The damage equation of the yellow sandstone with pores under the freezing and thawing is a log-power function nonlinear change law and presents a good correlation.


2012 ◽  
Vol 253-255 ◽  
pp. 456-461
Author(s):  
Yan Fu Qin ◽  
Bin Tian ◽  
Gang Xu ◽  
Xiao Chun Lu

Frost resistance research is one of the important subject of concrete durability, however strength criteria is an important part of the study of mechanical behavior of concrete. So far, about concrete failure criteria are almost for normal concrete, which the domestic and overseas scholars have comparative detailed research in every respect to it, and to freeze-thaw damage of concrete but few research. Based on the summary of the existing ordinary concrete strength and failure criteria in normal state and after freeze-thaw damage,this paper have a brief comment of failure criteria on concrete after freeze-thaw damage. For later research about concrete strength and failure criteria under freezing and thawing cycle provide the reference.


2016 ◽  
Vol 106 (7) ◽  
pp. 1658-1665.e4 ◽  
Author(s):  
Atefeh Najafi ◽  
Ebrahim Asadi ◽  
Adel R. Moawad ◽  
Saideh Mikaeili ◽  
Fardin Amidi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document