scholarly journals Evaluation of the Large-Length Indoor Standard Installation Based on Single Point Scanning

2021 ◽  
Vol 11 (19) ◽  
pp. 8953
Author(s):  
Chang’an Hu ◽  
Song Hu ◽  
Haifeng Sun ◽  
Junbo Liu ◽  
Jiangang Li ◽  
...  

The large length indoor standard installation (LLISI) serves as a standard traceability system for large-scale measuring devices, and hence evaluating the accuracy of its measurements during motion is of great importance. A laser tracker, as a single-point scanning method with strong anti-interference ability and high accuracy for 3D measurement, can meet the measurement requirements of LLISI. In this study, a laser tracker was used to evaluate the accuracy of LLISI during motion based on the single-point scanning method. Fifteen measurement combinations including five measurement intervals and three measurement speeds were selected in the experiment and the results were compared with the measurement data of a laser interferometer. By analyzing the local movement speed of the ISS platform, the uncertainty in local measurement speed of the platform was evaluated. The results showed that the laser tracker has high measurement accuracy and good repeatability for the measurement of LLISI, which can provide strong support for data resource protection of LLISI.

2019 ◽  
Vol 52 (9-10) ◽  
pp. 1220-1227 ◽  
Author(s):  
Chengyang Zhang ◽  
Xishuang Jing ◽  
Siyu Chen ◽  
Xuanzhe Ling ◽  
Jiarong Zou ◽  
...  

Background: When performing the spatial large-scale measurements, the measurement accuracy of laser tracker would decreased with the increase of the measurement distances due to the refraction difference of most optical digital measurement devices. Therefore, this paper proposed a method based on photogrammetry system to improve the large-scale measurement accuracy of the laser tracker. Purpose: The purpose of this method is to improve the large-scale measurement accuracy of the laser tracker by considering the advantages of photogrammetry system such as high measurement accuracy and good portability. Methods: The measurement data from the photogrammetry system would be used as a reference to do correction on measurement results from laser tracker. The coordinate correction method based on Rodrigues’ rotation formula has been discussed. The measurement accuracy of the long-distance point of laser tracker can be significantly improved through the coordinate correction method. Conclusion: Based on the advantages of using photogrammetry system, the proposed method can achieve higher accuracy when measuring the common points at a closer distance than the laser tracker can do when measuring objects far away from instrument. The feasibility of the proposed method has been demonstrated by experiment.


2005 ◽  
Vol 33 (1) ◽  
pp. 38-62 ◽  
Author(s):  
S. Oida ◽  
E. Seta ◽  
H. Heguri ◽  
K. Kato

Abstract Vehicles, such as an agricultural tractor, construction vehicle, mobile machinery, and 4-wheel drive vehicle, are often operated on unpaved ground. In many cases, the ground is deformable; therefore, the deformation should be taken into consideration in order to assess the off-the-road performance of a tire. Recent progress in computational mechanics enabled us to simulate the large scale coupling problem, in which the deformation of tire structure and of surrounding medium can be interactively considered. Using this technology, hydroplaning phenomena and tire traction on snow have been predicted. In this paper, the simulation methodology of tire/soil coupling problems is developed for pneumatic tires of arbitrary tread patterns. The Finite Element Method (FEM) and the Finite Volume Method (FVM) are used for structural and for soil-flow analysis, respectively. The soil is modeled as an elastoplastic material with a specified yield criterion and a nonlinear elasticity. The material constants are referred to measurement data, so that the cone penetration resistance and the shear resistance are represented. Finally, the traction force of the tire in a cultivated field is predicted, and a good correlation with experiments is obtained.


2006 ◽  
Vol 11 (3) ◽  
pp. 236-246 ◽  
Author(s):  
Laurence H. Lamarcq ◽  
Bradley J. Scherer ◽  
Michael L. Phelan ◽  
Nikolai N. Kalnine ◽  
Yen H. Nguyen ◽  
...  

A method for high-throughput cloning and analysis of short hairpin RNAs (shRNAs) is described. Using this approach, 464 shRNAs against 116 different genes were screened for knockdown efficacy, enabling rapid identification of effective shRNAs against 74 genes. Statistical analysis of the effects of various criteria on the activity of the shRNAs confirmed that some of the rules thought to govern small interfering RNA (siRNA) activity also apply to shRNAs. These include moderate GC content, absence of internal hairpins, and asymmetric thermal stability. However, the authors did not find strong support for positionspecific rules. In addition, analysis of the data suggests that not all genes are equally susceptible to RNAinterference (RNAi).


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 41
Author(s):  
Tim Jurisch ◽  
Stefan Cantré ◽  
Fokke Saathoff

A variety of studies recently proved the applicability of different dried, fine-grained dredged materials as replacement material for erosion-resistant sea dike covers. In Rostock, Germany, a large-scale field experiment was conducted, in which different dredged materials were tested with regard to installation technology, stability, turf development, infiltration, and erosion resistance. The infiltration experiments to study the development of a seepage line in the dike body showed unexpected measurement results. Due to the high complexity of the problem, standard geo-hydraulic models proved to be unable to analyze these results. Therefore, different methods of inverse infiltration modeling were applied, such as the parameter estimation tool (PEST) and the AMALGAM algorithm. In the paper, the two approaches are compared and discussed. A sensitivity analysis proved the presumption of a non-linear model behavior for the infiltration problem and the Eigenvalue ratio indicates that the dike infiltration is an ill-posed problem. Although this complicates the inverse modeling (e.g., termination in local minima), parameter sets close to an optimum were found with both the PEST and the AMALGAM algorithms. Together with the field measurement data, this information supports the rating of the effective material properties of the applied dredged materials used as dike cover material.


2021 ◽  
Vol 13 (11) ◽  
pp. 2201
Author(s):  
Hanlin Ye ◽  
Huadong Guo ◽  
Guang Liu ◽  
Jinsong Ping ◽  
Lu Zhang ◽  
...  

Moon-based Earth observations have attracted significant attention across many large-scale phenomena. As the only natural satellite of the Earth, and having a stable lunar surface as well as a particular orbit, Moon-based Earth observations allow the Earth to be viewed as a single point. Furthermore, in contrast with artificial satellites, the varied inclination of Moon-based observations can improve angular samplings of specific locations on Earth. However, the potential for estimating the global outgoing longwave radiation (OLR) from the Earth with such a platform has not yet been fully explored. To evaluate the possibility of calculating OLR using specific Earth observation geometry, we constructed a model to estimate Moon-based OLR measurements and investigated the potential of a Moon-based platform to acquire the necessary data to estimate global mean OLR. The primary method of our study is the discretization of the observational scope into various elements and the consequent integration of the OLR of all elements. Our results indicate that a Moon-based platform is suitable for global sampling related to the calculation of global mean OLR. By separating the geometric and anisotropic factors from the measurement calculations, we ensured that measured values include the effects of the Moon-based Earth observation geometry and the anisotropy of the scenes in the observational scope. Although our results indicate that higher measured values can be achieved if the platform is located near the center of the lunar disk, a maximum difference between locations of approximately 9 × 10−4 W m−2 indicates that the effect of location is too small to remarkably improve observation performance of the platform. In conclusion, our analysis demonstrates that a Moon-based platform has the potential to provide continuous, adequate, and long-term data for estimating global mean OLR.


2012 ◽  
Vol 497 ◽  
pp. 165-169 ◽  
Author(s):  
He Ping Zhang ◽  
Dong Ming Guo ◽  
Xu Wang ◽  
Hang Gao

Although Single Point Diamond Turning (SPDT) can do pretty well in optical surfacing of large scale KDP crystal, both the surface accuracy and integrity are considerably high; meanwhile as the defects of micro-waveness and stress are inevitable, the laser-induced damage threshold of KDP optical elements after SPDT still cannot be satisfied. Because of the characters of deliquescent and water-soluble, the process of computer controlled Micro-nano deliquescence is attempted to remove the residual micro-waveness on KDP surface after SPDT. Based on the assumption of Preston and the characters of Micro-nano deliquescence, the model of material removal ratio is suggested, the dwell time for ascertained KDP surface is solved, the processing of computer controlled Micro-nano deliquescence is simulated and the processed surface condition on theory is obtained. Besides, the influences of different parameters on the surfacing efficiency and accuracy are analyzed. Finally, three polishing tracks are comparatively analyzed. The simulation results are quite important in guiding the experimental polishing of large scale KDP by computer controlled Micro-nano deliquescence


2017 ◽  
Author(s):  
Huiting Mao ◽  
Dolly Hall ◽  
Zhuyun Ye ◽  
Ying Zhou ◽  
Dirk Felton ◽  
...  

Abstract. The impact of large-scale circulation on urban gaseous elemental mercury (GEM) was investigated through analysis of 2008–2015 measurement data from an urban site in New York City (NYC), New York, USA. Distinct annual cycles were observed in 2009–2010 with mixing ratios in warm seasons (i.e. spring–summer) 10–20 ppqv (~ 10 %–25 %) higher than in cool seasons (i.e. fall–winter). This annual cycle was disrupted in 2011 by an anomalously strong influence of the North American trough in that warm season and was reproduced in 2014 with annual amplitude enhanced up to ~ 70 ppqv associated with a particularly strong Bermuda High. North American trough axis index (TAI) and intensity index (TII) were used to characterize the effect of the North American trough on NYC GEM especially in winter and summer. The intensity and position of the Bermuda High had a significant impact on GEM in warm seasons supported by a strong correlation (r reaching 0.96, p 


2007 ◽  
Vol 577 ◽  
pp. 287-307 ◽  
Author(s):  
D. EWING ◽  
W. K. GEORGE ◽  
M. M. ROGERS ◽  
R. D. MOSER

The governing equations for the two-point correlations of the turbulent fluctuating velocity in the temporally evolving wake were analysed to determine whether they could have equilibrium similarity solutions. It was found that these equations could have such solutions for a finite-Reynolds-number wake, where the two-point velocity correlations could be written as a product of a time-dependent scale and a function dependent only on similarity variables. It is therefore possible to collapse the two-point measures of all the scales of motions in the temporally evolving wake using a single set of similarity variables. As in an earlier single-point analysis, it was found that the governing equations for the equilibrium similarity solutions could not be reduced to a form that was independent of a growth-rate dependent parameter. Thus, there is not a single ‘universal’ solution that describes the state of the large-scale structures, so that the large-scale structures in the far field may depend on how the flow is generated.The predictions of the similarity analysis were compared to the data from two direct numerical simulations of the temporally evolving wakes examined previously. It was found that the two-point velocity spectra of these temporally evolving wakes collapsed reasonably well over the entire range of scales when they were scaled in the manner deduced from the equilibrium similarity analysis. Thus, actual flows do seem to evolve in a manner consistent with the equilibrium similarity solutions.


2020 ◽  
Author(s):  
Dakota Folmsbee ◽  
Geoffrey Hutchison

We have performed a large-scale evaluation of current computational methods, including conventional small-molecule force fields, semiempirical, density functional, ab initio electronic structure methods, and current machine learning (ML) techniques to evaluate relative single-point energies. Using up to 10 local minima geometries across ~700 molecules, each optimized by B3LYP-D3BJ with single-point DLPNO-CCSD(T) triple-zeta energies, we consider over 6,500 single points to compare the correlation between different methods for both relative energies and ordered rankings of minima. We find promise from current ML methods and recommend methods at each tier of the accuracy-time tradeoff, particularly the recent GFN2 semiempirical method, the B97-3c density functional approximation, and RI-MP2 for accurate conformer energies. The ANI family of ML methods shows promise, particularly the ANI-1ccx variant trained in part on coupled-cluster energies. Multiple methods suggest continued improvements should be expected in both performance and accuracy.


Sign in / Sign up

Export Citation Format

Share Document