scholarly journals Titanium Nitride Plating Reduces Nickel Ion Release from Orthodontic Wire

2021 ◽  
Vol 11 (20) ◽  
pp. 9745
Author(s):  
Arata Ito ◽  
Hideki Kitaura ◽  
Haruki Sugisawa ◽  
Takahiro Noguchi ◽  
Fumitoshi Ohori ◽  
...  

The leaching of metal ions from orthodontic appliances is a problem for their use in patients with metal allergies. Despite the development of a number of non-metal orthodontic appliances, including brackets, non-metal wires are not yet available. Therefore, it is necessary to modify the surfaces of orthodontic wires to prevent the leaching of metal ions into the oral environment for use in such patients. This study was performed to examine whether plating of orthodontic wire with titanium nitride (TiN), which does not impair its mechanical properties, could prevent the leaching of metal ions from the wire on immersion in acid. To investigate the acid corrosion resistance of the wire, the amount of metal ions eluted from the wire immersed in acid was measured by using inductively coupled plasma mass spectrometry (ICP-MS) and the dimethylglyoxime (DMG) test, the properties of the wire surface were examined by stereomicroscopy and scanning electron microscopy, and the surface roughness was measured using a surface roughness tester. The results indicated that TiN plating of orthodontic wire significantly suppressed the elution of metal ions on immersion in acid.

The current research compared and analysed the tensile strength of silver soldered stainless steel and cobalt-chromium orthodontic wire joints with band material The effect of joint site planning on various orthodontic joining configurations was investigated. A total of sixty wire specimens were chosen, thirty in the stainless-steel group and thirty in the cobalt – chromium group. Again, each group's sample was divided into three subgroups, namely End – End, Round, and Orthodontic band material. The study findings suggested all three configurations can be used to make silver soldered joints regardless of the wire consistency. When subjecting the wire to joint site planning, however, stainless steel wire should be used with its limitations in mind.


The current research compared and analysed the tensile strength of silver soldered stainless steel and cobalt-chromium orthodontic wire joints with band material The effect of joint site planning on various orthodontic joining configurations was investigated. A total of sixty wire specimens were chosen, thirty in the stainless-steel group and thirty in the cobalt – chromium group. Again, each group's sample was divided into three subgroups, namely End – End, Round, and Orthodontic band material. The study findings suggested all three configurations can be used to make silver soldered joints regardless of the wire consistency. When subjecting the wire to joint site planning, however, stainless steel wire should be used with its limitations in mind.


2021 ◽  
Vol 912 (1) ◽  
pp. 012018
Author(s):  
H F Lubis ◽  
G H Simamora

Abstract Stainless steel archwire is an important component of orthodontic appliances that have the potential to corrode. Consumption of foods and beverages with a low pH, such as fruit-based juices, can trigger the release of nickel ions in stainless steel archwire. This study aimed to determine the difference in the amount of nickel ions release and the surface microstructure of stainless steel archwire after immersed in tomato and orange juice. The sample used is stainless steel archwire with a diameter of 0.016 inches and length of 5 cm immersed in 15 ml of solution and then stored at 37°C in an incubator for 24 hours. The samples were divided into three groups (immersed in tomato juice,orange juice and artificial saliva), each group consisted of 9 samples. The solution was tested using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) to determine the number of nickel ions released. The archwire surface microstructure was tested using a Scanning Electron Microscope (SEM). The results showed that the average amount of nickel ion release in orange juice is more than tomato juice. There was a significant difference between the amount of nickel ion released and surface microstructure on stainless steel archwire after being immersed in tomato and orange juice.


2021 ◽  
Vol 10 (29) ◽  
pp. 2162-2165
Author(s):  
Azhar Mohammed ◽  
Crystal Runa Soans ◽  
Shivananda S. ◽  
Yatishkumar S. Joshi ◽  
Junaid Junaid ◽  
...  

BACKGROUND Orthodontic metallic appliances in the oral cavity are constantly in contact with biological fluids or tissues thereby releasing particulate masses. They can be common causes of contact allergies and should be considered as a critical issue in determining properties of biomaterials. Nickel ions in various forms and compounds have been known to cause carcinogenic, mutagenic, cytotoxic and allergenic reactions. Pattern of metal ions released from different stainless steel orthodontic appliances in vitro could provide valuable information to consider their application in clinical scenarios. The purpose of the present study was to evaluate metal ions released under different ph levels, immersion period time and using different archwire orthodontic appliances. METHODS Orthodontic appliances were constructed consisting of five brackets from central incisor to the second premolar, a buccal tube welded molar band and an archwire that were used as samples. Total of twelve appliances were constructed; using stainless steel, Ni - Ti, and Thermal Ni - Ti wires (N = 4 each). Half of these samples were immersed in artificial saliva at pH 3.5 and the other half were immersed in artificial saliva at pH 6.75. The samples were stored in an incubator at a temperature of 37 degrees Celsius. Saliva samples from these bottles were collected at the end of 1, 7, 14 and 28 days and subjected to spectrophotometric analysis for estimation of nickel content. RESULTS Nickel release was maximum during the first week of immersion from orthodontic appliances comprising of Ni - Ti wires compared to Stainless steel and thermal Ni - Ti. A gradual decline in the nickel release was observed in the subsequent weeks. Ion release was increased by 30 times in the acidic pH medium, as compared to neutral pH conditions. CONCLUSIONS There is a definite release of nickel ions from orthodontic appliances when exposed to oral environment; however, the amounts are much lower than the daily dietary intake and don’t pose risk of toxicity. Care should be taken in patients with nickel hypersensitivity and wires such as beta - titanium or epoxy coated wires can be substituted. As there is an increase in ion release under acidic conditions the patients need to maintain hygienic oral environment thereby limiting corrosion of appliances. KEY WORDS NitiAlloy, Archwires, pH, Hypersensitivity


2018 ◽  
Vol 88 (4) ◽  
pp. 442-449 ◽  
Author(s):  
Nobukazu Shirakawa ◽  
Toshio Iwata ◽  
Shinjiro Miyake ◽  
Takero Otuka ◽  
So Koizumi ◽  
...  

ABSTRACT Objectives: To evaluate the esthetics and frictional force of an orthodontic wire passed through a newly designed tube made of a polyether ether ketone (PEEK) resin. Materials and Methods: Two types of standard PEEK tubes were prepared at 0.5 × 0.6ф and 0.8 × 0.9ф, and different archwires were passed through the tubes. Color values were determined according to brightness and hues. Friction was assessed with different bracket-wire combinations, and surface roughness was determined by stereomicroscopy before and after the application of friction. Results: The PEEK tube showed a color difference that was almost identical to that of coated wires conventionally used in clinical practice, indicating a sufficient esthetic property. The result of the friction test showed that the frictional force was greatly reduced by passing the archwire through the PEEK tube in almost all of the archwires tested. Conclusions: Use of the new PEEK tube demonstrated a good combination of esthetic and functional properties for use in orthodontic appliances.


2017 ◽  
Vol 50 (2) ◽  
pp. 80
Author(s):  
Ida Bagus Narmada ◽  
Natalya Tantri Sudarno ◽  
Achmad Sjafei ◽  
Yuli Setiyorini

Background: In the oral cavity, orthodontic appliances come into contact with saliva which may cause corrosion capable of changing their surface morphology due to the release of metal ions. Surface roughness can influence the effectiveness of tooth movement. One of the ions possibly released when body fluid comes into contact with brackets and archwire is nickel ion (Ni). Ni, one of the most popular components of orthodontic appliances, is, however, a toxic element that could potentially increase the likelihood of health problems such as allergic responses during treatment. Purpose: The purpose of this study was to investigate the effect of different artificial salivary pH on the ions released and the surface morphology of stainless steel (SS) brackets-nickel-titanium (NiTi) and archwire combinations. Methods: Brackets and archwires were analyzed by an Energy Dispersive X-Ray Detector System (EDX) to determine their composition, while NiTi archwire compound was examined by means of X-ray Diffraction (XRD). The immersion test was performed at artificial salivary pH levels of 4.2; 6.5; and 7.6 at 37°C for 28 days. Ni ion release measurement was performed using an Atomic Absorption Spectroscopy (AAS). Surface morphology was analyzed by means of a Scanning Electron Microscopy (SEM). Results: The chemical composition of all orthodontic appliances contained Ni element. In addition, XRD was depicted phases not only NiTi but also Ni, Titanium, Silicon and Zinc Oleate. The immersion test showed that the highest release of Ni ions occured at a pH of 4.2, with no significant difference at various levels of pH (p=.092). There were surface morphology changes in the orthodontic appliances. It was revealed that at a pH of 4.2, the surfaces of orthodontic appliances become unhomogenous and rough compared to those at other pH concentrations. Conclusion: The reduction of pH in the artificial saliva increases the amount of released Ni ions, as well as causing changes to the surface morphology of brackets and archwires.


2013 ◽  
Vol 789 ◽  
pp. 204-209
Author(s):  
Sungging Pintowantoro ◽  
Yuli Setiyorini

NiTi is alloy that has unique properties include shape memory dan superelasticity. However, it has disadvantages which cause allergic and toxicity to the body from the Ni release. In order to reduce Ni release and increase corrosion resistance an Electropolishing Pretreatment-Photoelectrocatalytic Oxidation (EP-PEO) and Advanced Oxidation Process (AOP) coating were synthesized in order to produce TiO2. Scanning Electron Microscope (SEM) was depicted various morphologies of NiTi orthodontic wire surface. Ni release experiment in various saliva by using Inductively Coupled Plasma (ICP) was shown reducing Ni release significantly both in saliva pH 3 dan pH 6.25 in AOP coating for 2 months monitoring. This results confirmed that the Ni release was evidently decreased and the corrosion resistance significantly improved after coated with AOP.


Sign in / Sign up

Export Citation Format

Share Document