Influence of pH Level and Type of Archwire on the Time Bound Release of Nickel Ions from Orthodontic Appliances - An In Vitro Study

2021 ◽  
Vol 10 (29) ◽  
pp. 2162-2165
Author(s):  
Azhar Mohammed ◽  
Crystal Runa Soans ◽  
Shivananda S. ◽  
Yatishkumar S. Joshi ◽  
Junaid Junaid ◽  
...  

BACKGROUND Orthodontic metallic appliances in the oral cavity are constantly in contact with biological fluids or tissues thereby releasing particulate masses. They can be common causes of contact allergies and should be considered as a critical issue in determining properties of biomaterials. Nickel ions in various forms and compounds have been known to cause carcinogenic, mutagenic, cytotoxic and allergenic reactions. Pattern of metal ions released from different stainless steel orthodontic appliances in vitro could provide valuable information to consider their application in clinical scenarios. The purpose of the present study was to evaluate metal ions released under different ph levels, immersion period time and using different archwire orthodontic appliances. METHODS Orthodontic appliances were constructed consisting of five brackets from central incisor to the second premolar, a buccal tube welded molar band and an archwire that were used as samples. Total of twelve appliances were constructed; using stainless steel, Ni - Ti, and Thermal Ni - Ti wires (N = 4 each). Half of these samples were immersed in artificial saliva at pH 3.5 and the other half were immersed in artificial saliva at pH 6.75. The samples were stored in an incubator at a temperature of 37 degrees Celsius. Saliva samples from these bottles were collected at the end of 1, 7, 14 and 28 days and subjected to spectrophotometric analysis for estimation of nickel content. RESULTS Nickel release was maximum during the first week of immersion from orthodontic appliances comprising of Ni - Ti wires compared to Stainless steel and thermal Ni - Ti. A gradual decline in the nickel release was observed in the subsequent weeks. Ion release was increased by 30 times in the acidic pH medium, as compared to neutral pH conditions. CONCLUSIONS There is a definite release of nickel ions from orthodontic appliances when exposed to oral environment; however, the amounts are much lower than the daily dietary intake and don’t pose risk of toxicity. Care should be taken in patients with nickel hypersensitivity and wires such as beta - titanium or epoxy coated wires can be substituted. As there is an increase in ion release under acidic conditions the patients need to maintain hygienic oral environment thereby limiting corrosion of appliances. KEY WORDS NitiAlloy, Archwires, pH, Hypersensitivity

2021 ◽  
Vol 912 (1) ◽  
pp. 012018
Author(s):  
H F Lubis ◽  
G H Simamora

Abstract Stainless steel archwire is an important component of orthodontic appliances that have the potential to corrode. Consumption of foods and beverages with a low pH, such as fruit-based juices, can trigger the release of nickel ions in stainless steel archwire. This study aimed to determine the difference in the amount of nickel ions release and the surface microstructure of stainless steel archwire after immersed in tomato and orange juice. The sample used is stainless steel archwire with a diameter of 0.016 inches and length of 5 cm immersed in 15 ml of solution and then stored at 37°C in an incubator for 24 hours. The samples were divided into three groups (immersed in tomato juice,orange juice and artificial saliva), each group consisted of 9 samples. The solution was tested using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) to determine the number of nickel ions released. The archwire surface microstructure was tested using a Scanning Electron Microscope (SEM). The results showed that the average amount of nickel ion release in orange juice is more than tomato juice. There was a significant difference between the amount of nickel ion released and surface microstructure on stainless steel archwire after being immersed in tomato and orange juice.


2016 ◽  
Vol 8 (2) ◽  
pp. 97
Author(s):  
Irene Karlina ◽  
Rahmi Amtha ◽  
Boedi Oetomo Roeslan ◽  
Yuniar Zen

BACKGROUND: Stainless steel brackets are composed of various metal that may corrode in oral cavity. Corrosion is caused by the release of metal ions such as chromium, nickel, and iron. The release of metal ions can cause adverse effects such as toxicity, allergic, and mutagenicity. To evaluate the biocompatibility of stainless steel brackets, micronucleus assay as one of genotoxicity assay is used in this study. To determine the differences and the correlation of metal ions release and genotoxic activity among three brand stainless steel brackets.METHODS: Three brands of brackets were immersed in artificial saliva for 672 hours and the release of ion chromium, nikel and iron were examined. The cytokynesis block micronucleus assay (CBMN) using lymphocytes was performed as well.RESULTS: The highest metal releasing were nickel, cromium, iron, respectively (30.5, 27.2, 23.4 ppb). There was a significant differences between total nickel and iron ion release among three brand brackets (p=0.04, p=0.02). Genotoxicity of metal ion released was correlated with durration of immersion brackets (p=0.01). Genotoxicity was significant correlated with the release of chromium (p=0.03) and nickel (p=0.01).CONCLUSION: Genotoxicity of stainless steel brackets was influenced by duration of immersion but not influenced by brand brackets. KEYWORDS: genotoxicity, stainless steel brackets, metal ion


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 63
Author(s):  
Vito Kovač ◽  
Matic Bergant ◽  
Janez Ščančar ◽  
Jasmina Primožič ◽  
Polona Jamnik ◽  
...  

Misaligned teeth have a tremendous impact on oral and dental health, and the most efficient method of correcting the problem is orthodontic treatment with orthodontic appliances. The study was conducted to investigate the metal composition of selected orthodontic alloys, the release of metal ions, and the oxidative consequences that the metal ions may cause in the cell. Different sets of archwires, stainless steel brackets, and molar bands were incubated in artificial saliva for 90 days. The composition of each orthodontic material and quantification of the concentration of metal ions released were evaluated. Metal ion mixtures were prepared to determine the occurrence of oxidative stress, antioxidant enzyme defense system, and oxidative damage to proteins. The beta titanium alloy released the fewest metal ions and did not cause oxidative stress or protein damage. The metal ions from stainless steel and the cobalt-chromium alloy can cause oxidative stress and protein damage only at high concentrations. All metal ions from orthodontic alloys alter the activity of antioxidant enzymes in some way. The determined amounts of metal ions released from orthodontic appliances in a simulated oral environment are still below the maximum tolerated dose, and the concentrations of released metal ions are not capable of inducing oxidative stress, although some changes in antioxidant enzyme activity were observed at these concentrations.


2020 ◽  
Vol 53 (2) ◽  
pp. 67
Author(s):  
Hilda Fitria Lubis ◽  
Kholidina Imanda Harahap ◽  
Dina Hudiya Nadana Lubis

Background: Stainless steel is a material that can be used in orthodontics for components of dental braces, such as brackets, archwires and molar bands. Orthodontic archwires exposed to toothpaste can release nickel ions that cause hypersensitivity. The excessive use of sodium lauryl sulphate in detergent toothpaste can cause mouth irritation, severe ulceration, decreased salivary solubility and taste sensitivity changes. Purpose: The aim of this study is to compare the nickel ion released by stainless steel archwires after immersion in detergent and non-detergent toothpaste. Methods: Forty stainless steel archwires from Ortho Organizer (0.016 x 0.022in) were divided into two groups (n=20). Group 1 comprised stainless steel archwires immersed in detergent toothpaste. Group 2 consisted of stainless steel archwires immersed in non-detergent toothpaste. These archwires were immersed in 1.5g toothpaste then kept in an incubator at 37°C for around 24 hours. After that, the archwires were removed from the toothpaste, and the toothpaste was dissolved in 25ml of Aquadest. The amount of nickel ion released was examined by using inductively coupled plasma optical emission spectrometry (ICP-OES). After that, the structure of the sample surface was examined with a scanning electron microscope (SEM). A statistical analysis was done using the Shapiro–Wilk normality test (p>0.05). An independent t-test was carried out to compare the two groups (p<0.05). Results: The mean of nickel ion release in group 1 was 0.214±0.319mg/l, and in group 2 it was 0.168±0.107 mg/l. There was no significance between the groups (p=0.323; p>0.05). The SEM images of the archwire surfaces showed that there were more corrosive contour changes in the archwire surface in group 1 than in group 2. Conclusion: There was no difference between the nickel ion released from stainless steel orthodontic archwires after immersion in detergent and non-detergent toothpaste. After immersion in detergent toothpaste, stainless steel archwire surfaces showed more corrosive contour changes than those immersed in non-detergent toothpaste.


2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Milad Arab-Nozari ◽  
◽  
Mohammad Shokrzadeh ◽  
Nastaran Zamehran ◽  
Jamshid Yazdani Charati ◽  
...  

Objective: Stainless steel crowns (SSCs) are preformed metal crowns used to restore severely decayed primary teeth. The aim of this study is to evaluate the effects of pH changes and SSC margin trimming on nickel release in artificial saliva solution. Methods: A total of 90 SSCs were divided into three groups and placed in 35 ml of artificial saliva of pH 6.8, 5, and 3.5. Another group consisting 30 SSCs with trimmed margins was placed in saliva of pH 6.8. All SSCs were incubated at 37°C. The concentration of released nickel was assessed on days 1, 7, 14, 21, and 28 by atomic absorption spectrophotometry. Results: The highest concentrations of nickel were released on the first day in all groups. Nickel release increased with decreasing pH, and the differences observed were statistically significant on days 1, 7, 14, and 28. SSC trimming caused a significant increase in nickel release on all days except day 21. Conclusion: The concentration of nickel increased in saliva of low pH. The highest levels of nickel were released with SSC margin trimming because of the loss of integrity of the margins.


2012 ◽  
Vol 13 (3) ◽  
pp. 376-381 ◽  
Author(s):  
CM Manjith ◽  
Srinivas Kumar Karnam ◽  
A Naveen Reddy

ABSTRACT Aim The metal ion released from the orthodontic appliance may cause allergic reactions particularly nickel and chromium ions. Hence, this study was undertaken to determine the amount of nickel, chromium, copper, cobalt and iron ions released from simulated orthodontic appliance made of new archwires and brackets. Materials and methods Sixty sets of new archwire, band material, brackets and ligature wires were prepared simulating fixed orthodontic appliance. These sets were divided into four groups of fifteen samples each. Group 1: Stainless steel rectangular archwires. Group 2: Rectangular NiTi archwires. Group 3: Rectangular copper NiTi archwires. Group 4: Rectangular elgiloy archwires. These appliances were immersed in 50 ml of artificial saliva solution and stored in polypropylene bottles in the incubator to simulate oral conditions. After 90 days the solution were tested for nickel, chromium, copper, cobalt and iron ions using atomic absorption spectrophotometer. Results Results showed that high levels of nickel ions were released from all four groups, compared to all other ions, followed by release of iron ion levels. There is no significant difference in the levels of all metal ions released in the different groups. Conclusion The study confirms that the use of newer brackets and newer archwires confirms the negligible release of metal ions from the orthodontic appliance. Clinical significance The measurable amount of metals, released from orthodontic appliances in artificial saliva, was significantly below the average dietary intake and did not reach toxic concentrations. How to cite this article Karnam SK, Reddy AN, Manjith CM. Comparison of Metal Ion Release from Different Bracket Archwire Combinations: An in vitro Study. J Contemp Dent Pract 2012;13(3):376-381.


2021 ◽  
Vol 20 (2) ◽  
Author(s):  
Siti Hajjar Nasir ◽  
Muhammad Syahmi Mohamad Amran ◽  
Muhammad Muaz Abidin Mustaffar

INTRODUCTION: The growing demand for orthodontic braces among Malaysians has led to the development of fake braces. These fake braces services are illegal and their brackets are reported to be of inferior quality. Fake braces are constantly being exposed to the saliva intraorally, hence they are susceptible to corrosion. This study was conducted to investigate the release of metal ions as a result of corrosion from standard and fake orthodontic braces immersed in artificial saliva of different pH. MATERIALS AND METHODS: A total of six different types of brackets (three from standard and three from fake braces) were immersed in containers containing 5 mL of artificial saliva of pH 4.9 and pH 7.8. The samples were collected for analysis on day 1, day 14, and day 28 using Inductively-Coupled Plasma Mass Spectrometry (ICPMS) to evaluate the amount of metal ion released. Statistical analysis was performed to isolate the significant difference of metal ions released between two types of braces in different pH solutions. RESULTS: The release of aluminum, nickel, chromium, manganese and copper were observed and analyzed. Fake braces released the highest concentration of chromium, manganese, and nickel ions in both artificial saliva as compared to standard braces. Brackets immersed in pH 4.9 released a higher number of ions compared to pH 7.8. CONCLUSION: This study showed that fake braces released the highest concentration of metal ions as compared to standard braces. Both time and pH influenced the release of metal ions from orthodontic brackets.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7069
Author(s):  
Dessy Rachmawati ◽  
Devanti Ayu Cahyasari ◽  
Ardin Tito Febiantama ◽  
Lusi Hidayati ◽  
Cornelis Johannes Kleverlaan

Alloys in oral cavity always interact with dynamic oral environment, such as pH, temperature, salivary conditions, and dietary habits. Coffee can further decrease pH in the oral cavity. Thus, coffee may increase the release of metal ions that may lead to various health diseases. This study aimed to quantitively investigate the effect of brewed Robusta coffee on the nickel ion release and their morphological structures; Methods: 20 alloy specimens were divided into 4 groups and placed in solutions for 48 and 168 h: (1) distilled water, (2) artificial saliva, (3) Robusta coffee, and (4) mixture of artificial saliva and Robusta coffee. AAS, XRF, and SEM were used for examinations; Results: The release of Ni2+ was found in all groups and robust release were found in the coffee only and mixture of coffee + artificial saliva solution after 168 h. Likewise, SEM showed that internal oxidation was high after 168 h of immersion; Conclusions: The concentration of nickel increased in saliva of low pH due to brewed coffee. Though the release of these ions is still within the tolerable amount in human body, it should be realized that it usually lasts for months or years. Dentists should be cautious when using instructions for patients with a history of allergies especially for dietary with low acidity.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3402
Author(s):  
Lena Wepner ◽  
Harald Andreas Färber ◽  
Andreas Jaensch ◽  
Anna Weber ◽  
Florian Heuser ◽  
...  

Various orthodontic wire compositions and configurations are present on the market for removable appliances; however, there have still been only few studies focusing on the effect of resin color and additives such as glitter on corrosion of metallic wires under different conditions. Thus, the aim of the study was to compare concentrations of released ions (aluminium, chromium, nickel) in a corrosive medium under three different conditions: non-loaded wires, loaded wires, and non-loaded wires treated with Kukis® cleaning tablets. Six different wires made of three types of steel alloy were embedded in PMMA resin leaving one centimetre of each wire emerging from the resin to come into contact with the corrosive medium. Glitter particles were added to half of the produced test specimens. For the unloaded test series, five specimens of each group were covered in a petri dish with 50 mL of corrosive medium (pH 2.3) following EN-ISO 10271 for seven days at 37 °C. The wires for the mechanically loaded test specimens overlapped the resin by 5 cm and were clamped into a time-switched electric drive for a defined period of time before the samples were taken after a testing time of 7 days. In the third group, unloaded test specimens were transferred from their petri dishes into the prepared Kukis® solution every 24 h before being stored in the corrosive medium. Inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify the specific ions in the corrosive solution. Statistical analysis showed that the mechanical loading of all wires could significantly raise the diffusion of ions into the corrosive medium. The colour of the resin did not affect the concentration of the released ions. The Kukis® cleaning tabs could not lower the corrosion of the tested metals, as some of the wires were corroded even more using the brace cleanser. Glitter-containing test specimens showed significantly higher amounts of aluminium. Mechanical loading as well as the presence of glitter particles in the resin significantly affected ion concentrations.


2012 ◽  
Vol 23 (2) ◽  
pp. 141-148 ◽  
Author(s):  
Rodrigo Galo ◽  
Ricardo Faria Ribeiro ◽  
Renata Cristina Silveira Rodrigues ◽  
Luís Augusto Rocha ◽  
Maria da Glória Chiarello de Mattos

The aim of this study was to determine the effect of the oral environment on the corrosion of dental alloys with different compositions, using electrochemical methods. The corrosion rates were obtained from the current-potential curves and electrochemical impedance spectroscopy (EIS). The effect of artificial saliva on the corrosion of dental alloys was dependent on alloy composition. Dissolution of the ions occurred in all tested dental alloys and the results were strongly dependent on the general alloy composition. Regarding the alloys containing nickel, the Ni-Cr and Ni-Cr-Ti alloys released 0.62 mg/L of Ni on average, while the Co-Cr dental alloy released ions between 0.01 and 0.03 mg/L of Co and Cr, respectively.The open-circuit potential stabilized at a higher level with lower deviation (standard deviation: Ni-Cr-6Ti = 32 mV/SCE and Co-Cr = 54 mV/SCE). The potenciodynamic curves of the dental alloys showed that the Ni-based dental alloy with >70 wt% of Ni had a similar curve and the Co-Cr dental alloy showed a low current density and hence a high resistance to corrosion compared with the Ni-based dental alloys. Some changes in microstructure were observed and this fact influenced the corrosion behavior for the alloys. The lower corrosion resistance also led to greater release of nickel ions to the medium. The quantity of Co ions released from the Co-Cr-Mo alloy was relatively small in the solutions. In addition, the quantity of Cr ions released into the artificial saliva from the Co-Cr alloy was lower than Cr release from the Ni-based dental alloys.


Sign in / Sign up

Export Citation Format

Share Document