scholarly journals Recognition of Eye-Written Characters Using Deep Neural Network

2021 ◽  
Vol 11 (22) ◽  
pp. 11036
Author(s):  
Won-Du Chang ◽  
Jae-Hyeok Choi ◽  
Jungpil Shin

Eye writing is a human–computer interaction tool that translates eye movements into characters using automatic recognition by computers. Eye-written characters are similar in form to handwritten ones, but their shapes are often distorted because of the biosignal’s instability or user mistakes. Various conventional methods have been used to overcome these limitations and recognize eye-written characters accurately, but difficulties have been reported as regards decreasing the error rates. This paper proposes a method using a deep neural network with inception modules and an ensemble structure. Preprocessing procedures, which are often used in conventional methods, were minimized using the proposed method. The proposed method was validated in a writer-independent manner using an open dataset of characters eye-written by 18 writers. The method achieved a 97.78% accuracy, and the error rates were reduced by almost a half compared to those of conventional methods, which indicates that the proposed model successfully learned eye-written characters. Remarkably, the accuracy was achieved in a writer-independent manner, which suggests that a deep neural network model trained using the proposed method is would be stable even for new writers.

2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Jinying Kong ◽  
Yating Yang ◽  
Lei Wang ◽  
Xi Zhou ◽  
Tonghai Jiang ◽  
...  

In phrase-based machine translation (PBMT) systems, the reordering table and phrase table are very large and redundant. Unlike most previous works which aim to filter phrase table, this paper proposes a novel deep neural network model to prune reordering table. We cast the task as a deep learning problem where we jointly train two models: a generative model to implement rule embedding and a discriminative model to classify rules. The main contribution of this paper is that we optimize the reordering model in PBMT by filtering reordering table using a recursive autoencoder model. To evaluate the performance of the proposed model, we performed it on public corpus to measure its reordering ability. The experimental results show that our approach obtains high improvement in BLEU score with less scale of reordering table on two language pairs: English-Chinese (+0.28) and Uyghur-Chinese (+0.33) MT.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5668
Author(s):  
Yan-Cheng Hsu ◽  
Yung-Hui Li ◽  
Ching-Chun Chang ◽  
Latifa Nabila Harfiya

Due to the growing public awareness of cardiovascular disease (CVD), blood pressure (BP) estimation models have been developed based on physiological parameters extracted from both electrocardiograms (ECGs) and photoplethysmograms (PPGs). Still, in order to enhance the usability as well as reduce the sensor cost, researchers endeavor to establish a generalized BP estimation model using only PPG signals. In this paper, we propose a deep neural network model capable of extracting 32 features exclusively from PPG signals for BP estimation. The effectiveness and accuracy of our proposed model was evaluated by the root mean square error (RMSE), mean absolute error (MAE), the Association for the Advancement of Medical Instrumentation (AAMI) standard and the British Hypertension Society (BHS) standard. Experimental results showed that the RMSEs in systolic blood pressure (SBP) and diastolic blood pressure (DBP) are 4.643 mmHg and 3.307 mmHg, respectively, across 9000 subjects, with 80.63% of absolute errors among estimated SBP records lower than 5 mmHg and 90.19% of absolute errors among estimated DBP records lower than 5 mmHg. We demonstrated that our proposed model has remarkably high accuracy on the largest BP database found in the literature, which shows its effectiveness compared to some prior works.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1085 ◽  
Author(s):  
Yeongtaek Song ◽  
Incheol Kim

This paper proposes a novel deep neural network model for solving the spatio-temporal-action-detection problem, by localizing all multiple-action regions and classifying the corresponding actions in an untrimmed video. The proposed model uses a spatio-temporal region proposal method to effectively detect multiple-action regions. First, in the temporal region proposal, anchor boxes were generated by targeting regions expected to potentially contain actions. Unlike the conventional temporal region proposal methods, the proposed method uses a complementary two-stage method to effectively detect the temporal regions of the respective actions occurring asynchronously. In addition, to detect a principal agent performing an action among the people appearing in a video, the spatial region proposal process was used. Further, coarse-level features contain comprehensive information of the whole video and have been frequently used in conventional action-detection studies. However, they cannot provide detailed information of each person performing an action in a video. In order to overcome the limitation of coarse-level features, the proposed model additionally learns fine-level features from the proposed action tubes in the video. Various experiments conducted using the LIRIS-HARL and UCF-10 datasets confirm the high performance and effectiveness of the proposed deep neural network model.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Di Mu ◽  
Shuning Wang

It is important to accurately estimate the SOC to ensure that the lithium-ion battery is within a safe working range, prevent over-charging and over-discharging, and ultimately improve battery life. However, SOC is an internal state of the battery and cannot be directly measured. This paper proposes a SOC estimation method based on the wide and deep neural network model, which combines the linear regression (LR) model and the backpropagation neural network (BPNN) model. This article uses the dataset provided by the Advanced Energy Storage and Applications (AESA) group to verify the performance of the model. The performance of the proposed model is compared with the common BPNN model in terms of root mean square error (RMSE), average absolute proportional error (MAPE), and SOC estimation error. The validation results prove that the effect of the proposed model in estimating SOC is better than that of the ordinary BPNN model. Compared with the BPNN model, the RMSE values of the SOC predicted value of the wide and deep model in the charging and discharging stages were reduced by 10.2% and 15.4%, respectively. Experimental results show that the maximum SOC estimation error of the model in predicting the SOC during charging and discharging is 0.42% and 0.86%, respectively.


2020 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Muchun Su ◽  
Diana Wahyu Hayati ◽  
Shaowu Tseng ◽  
Jiehhaur Chen ◽  
Hsihsien Wei

Health care for independently living elders is more important than ever. Automatic recognition of their Activities of Daily Living (ADL) is the first step to solving the health care issues faced by seniors in an efficient way. The paper describes a Deep Neural Network (DNN)-based recognition system aimed at facilitating smart care, which combines ADL recognition, image/video processing, movement calculation, and DNN. An algorithm is developed for processing skeletal data, filtering noise, and pattern recognition for identification of the 10 most common ADL including standing, bending, squatting, sitting, eating, hand holding, hand raising, sitting plus drinking, standing plus drinking, and falling. The evaluation results show that this DNN-based system is suitable method for dealing with ADL recognition with an accuracy rate of over 95%. The findings support the feasibility of this system that is efficient enough for both practical and academic applications.


2020 ◽  
Vol 8 (10) ◽  
pp. 766
Author(s):  
Dohan Oh ◽  
Julia Race ◽  
Selda Oterkus ◽  
Bonguk Koo

Mechanical damage is recognized as a problem that reduces the performance of oil and gas pipelines and has been the subject of continuous research. The artificial neural network in the spotlight recently is expected to be another solution to solve the problems relating to the pipelines. The deep neural network, which is on the basis of artificial neural network algorithm and is a method amongst various machine learning methods, is applied in this study. The applicability of machine learning techniques such as deep neural network for the prediction of burst pressure has been investigated for dented API 5L X-grade pipelines. To this end, supervised learning is employed, and the deep neural network model has four layers with three hidden layers, and the neural network uses the fully connected layer. The burst pressure computed by deep neural network model has been compared with the results of finite element analysis based parametric study, and the burst pressure calculated by the experimental results. According to the comparison results, it showed good agreement. Therefore, it is concluded that deep neural networks can be another solution for predicting the burst pressure of API 5L X-grade dented pipelines.


Author(s):  
Mostafa H. Tawfeek ◽  
Karim El-Basyouny

Safety Performance Functions (SPFs) are regression models used to predict the expected number of collisions as a function of various traffic and geometric characteristics. One of the integral components in developing SPFs is the availability of accurate exposure factors, that is, annual average daily traffic (AADT). However, AADTs are not often available for minor roads at rural intersections. This study aims to develop a robust AADT estimation model using a deep neural network. A total of 1,350 rural four-legged, stop-controlled intersections from the Province of Alberta, Canada, were used to train the neural network. The results of the deep neural network model were compared with the traditional estimation method, which uses linear regression. The results indicated that the deep neural network model improved the estimation of minor roads’ AADT by 35% when compared with the traditional method. Furthermore, SPFs developed using linear regression resulted in models with statistically insignificant AADTs on minor roads. Conversely, the SPF developed using the neural network provided a better fit to the data with both AADTs on minor and major roads being statistically significant variables. The findings indicated that the proposed model could enhance the predictive power of the SPF and therefore improve the decision-making process since SPFs are used in all parts of the safety management process.


Sign in / Sign up

Export Citation Format

Share Document