scholarly journals Cartilage Repair and Regeneration: Focus on Multi-Disciplinary Strategies—Highlight on Magneto-Responsive Techniques

2021 ◽  
Vol 11 (23) ◽  
pp. 11092
Author(s):  
Marta Anna Szychlinska

This editorial focuses on the interesting studies published within the present Special Issue and dealing with the innovative multi-disciplinary therapeutic approaches for musculoskeletal diseases. Moreover, it highlights the noteworthy magneto-responsive technique for a cartilage regeneration scope and reports some interesting studies and their outcomes in this specific field.

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Kangkang Zha ◽  
Xu Li ◽  
Zhen Yang ◽  
Guangzhao Tian ◽  
Zhiqiang Sun ◽  
...  

AbstractArticular cartilage is susceptible to damage but hard to self-repair due to its avascular nature. Traditional treatment methods are not able to produce satisfactory effects. Mesenchymal stem cells (MSCs) have shown great promise in cartilage repair. However, the therapeutic effect of MSCs is often unstable partly due to their heterogeneity. Understanding the heterogeneity of MSCs and the potential of different types of MSCs for cartilage regeneration will facilitate the selection of superior MSCs for treating cartilage damage. This review provides an overview of the heterogeneity of MSCs at the donor, tissue source and cell immunophenotype levels, including their cytological properties, such as their ability for proliferation, chondrogenic differentiation and immunoregulation, as well as their current applications in cartilage regeneration. This information will improve the precision of MSC-based therapeutic strategies, thus maximizing the efficiency of articular cartilage repair.


2011 ◽  
Vol 1 (5) ◽  
pp. 1-2
Author(s):  
Lavkush Dwivedi

Infectious diseases and consequent immune imbalancesare major constraint in human health managementthroughout the world. However, in recentdecades enormous efforts have been made to elucidatethe immunomodulatory approaches againstinfectious diseases. Immunomodulation is a therapeuticapproach in which we try to intervene inauto regulating processes of the defense system toadjust the immune response at a desired level.The present special issue on cutting edge issues inImmunomodulation like Immune stimulation, Immunesuppression, Immune potentiating and immunereinforcement summarizes our current understandingof this complex mosaic. The accompanyingselection of recent articles from across theworld provides further insight into this topic. 


2021 ◽  
Author(s):  
Yin Zhang ◽  
Qing Bi ◽  
Taihen Yu ◽  
Zheping Hong ◽  
Yu Tong ◽  
...  

Abstract BackgroundCartilage defect remains one of the most important reasons for the rapid development of knee osteoarthritis (OA). Numerous reports have confirmed the safety and clinical efficacy of autologous adipose-derived stromal vascular fractions (SVF), which has recently been used clinically to treat patients with knee OA. However, there is still no consensus as to whether SVF can promote cartilage regeneration. Herein, we purposed to evaluate the effectiveness of SVF in cartilage regeneration by developing cartilage model based on the 3D-FS-SPGR sequence.MethodsPatients with Kellgren-Lawrence grade 2-3 knee OA were recruited in our research. Then, we monitored patients and subsequently scored symptoms using WOMAC, VAS, and range of motion (ROM) before treatment and at 1, 3, 6, and 12 months post-treatment. The WORMS and MOCART were recorded by magnetic resonance imaging. The cartilage model of the patient was established using the 3D-FS-SPGR sequence, while the relevant parameters of the model were counted at baseline, 6, and 12 months.ResultsWe enrolled 47 patients (53 knees) with knee OA in this study, of which 29 knees were classified as grade 2, while 24 were assigned grade 3. No treatment-related adverse event was observed in our study. Notably, WOMAC, VAS, and ROM showed a significant improvement at 12 months. We further found that the thickness, volume, and surface of the cartilage defect decreased, while the volume of healthy cartilage increased in all regions, particularly in the medial femoral and tibia condyle. Moreover, the scores of WORMS and MOCART revealed a substantial improvement of cartilage repair at 12 months. ConclusionsTaken together, this study shows that intra-articular injection of SVF into the knee markedly improved the clinical symptoms of patients without the occurrence of adverse events, thereby repairing the damaged articular cartilage through cartilage regeneration.Trial registrationRetrospectively registered. Chinses Clinical Trial Registry with identifier ChiCTR2100042930. Registered 28 January 2021.


2019 ◽  
Vol 1 (2) ◽  
pp. 45
Author(s):  
Maghrizal Roychan ◽  
Andre Triadi Desnantyo

ABSTRAKPenyakit Osteochondral Lesion of the Talus (OLT) adalah kelainan pada tulang talus di lapisan subchondral yang berupa lesi osteochondral pada talar dome dengan konsekuensi abnormalitas pada tulang rawan sendi talar. Pasien biasanya datang berobat ke tenaga kesehatan dengan keluhan yang tidak spesifik dan dengan gejala seperti nyeri pada pergelangan kaki, bengkak serta berkurangnya berkurangnya ruang gerak. Penegakan diagnosis bisa dilakukan dengan anamnesis, pemeriksaan fisik dan pemeriksaan penunjang sederhana seperti foto X-ray maupun pemeriksaan penunjang canggih seperti CT-Scan dan MRI. Tatalaksana OLT bervariasi. Tatalaksana pada OLT tergantung dari tahapan lesi, kronisitasnya, dan keluhan simtomatis yang menyertainya. Pasien dengan keluhan simtomatis yang akut dan non-displaced sering diberikan terapi nonoperatif biasanya berupa terapi konservatif dengan imobilisasi. Lesi yang tidak berhasil atau tidak menunjukkan perbaikan dalam keluhan simtomatisnya setelah 3 sampai 6 bulan, serta lesi dengan displacement dapat direncanakan untuk terapi operatif. Ada beberapa macam tehnik operatif yang dapat dilakukan untuk menyembuhkan OLT. Tehnik operatif ini dapat dikategorikan menjadi cartilage repair, cartilage regeneration dan cartilage replacement techniques.Kata kunci: osteochondral lesion of the talus, patofisiologi, tatalaksanaABSTRACTOsteochondral Lesion of the Talus (OLT) is an abnormality in the talus bone in the subchondral layer in the form of osteochondral lesions in the talar dome with consequent abnormalities in the talar joint cartilage. Patients usually come to a health care provider with nonspecific complaints and with symptoms such as pain in the ankles, swelling and reduced space for movement. The diagnosis can be made with a history, physical examination and simple investigations such as X-rays and sophisticated investigations such as CT-Scan and MRI. The management of OLT varies. The management of OLT depends on the stage of the lesion, its chronicity, and the accompanying symptomatic complaints. Patients with acute and non-displaced symptomatic complaints are often given nonoperative therapy usually in the form of conservative therapy with immobilization. Lesions that are unsuccessful or show no improvement in symptomatic complaints after 3 to 6 months, and lesions with displacement can be planned for operative therapy. There are several types of operative techniques that can be done to cure OLT. These operative techniques can be categorized into cartilage repair, cartilage regeneration and cartilage replacement techniques. Keywords: osteochondral lesion of the talus, patophysiology, treatment


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Mohammed Zayed ◽  
Steven Newby ◽  
Nabil Misk ◽  
Robert Donnell ◽  
Madhu Dhar

Horses are widely used as large animal preclinical models for cartilage repair studies, and hence, there is an interest in using equine synovial fluid-derived mesenchymal stem cells (SFMSCs) in research and clinical applications. Since, we have previously reported that similar to bone marrow-derived MSCs (BMMSCs), SFMSCs may also exhibit donor-to-donor variations in their stem cell properties; the current study was carried out as a proof-of-concept study, to compare the in vivo potential of equine BMMSCs and SFMSCs in articular cartilage repair. MSCs from these two sources were isolated from the same equine donor. In vitro analyses confirmed a significant increase in COMP expression in SFMSCs at day 14. The cells were then encapsulated in neutral agarose scaffold constructs and were implanted into two mm diameter full-thickness articular cartilage defect in trochlear grooves of the rat femur. MSCs were fluorescently labeled, and one week after treatment, the knee joints were evaluated for the presence of MSCs to the injured site and at 12 weeks were evaluated macroscopically, histologically, and then by immunofluorescence for healing of the defect. The macroscopic and histological evaluations showed better healing of the articular cartilage in the MSCs’ treated knee than in the control. Interestingly, SFMSC-treated knees showed a significantly higher Col II expression, suggesting the presence of hyaline cartilage in the healed defect. Data suggests that equine SFMSCs may be a viable option for treating osteochondral defects; however, their stem cell properties require prior testing before application.


2020 ◽  
Vol 21 (18) ◽  
pp. 6657
Author(s):  
Nicoletta Pedemonte

Cystic fibrosis (CF) is the most common lethal genetic disease in Caucasian populations, occurring in approximately 1 in 3000 newborns worldwide [...]


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Francesco Perdisa ◽  
Natalia Gostyńska ◽  
Alice Roffi ◽  
Giuseppe Filardo ◽  
Maurilio Marcacci ◽  
...  

Among the current therapeutic approaches for the regeneration of damaged articular cartilage, none has yet proven to offer results comparable to those of native hyaline cartilage. Recently, it has been claimed that the use of mesenchymal stem cells (MSCs) provides greater regenerative potential than differentiated cells, such as chondrocytes. Among the different kinds of MSCs available, adipose-derived mesenchymal stem cells (ADSCs) are emerging due to their abundancy and easiness to harvest. However, their mechanism of action and potential for cartilage regeneration are still under investigation, and many other aspects still need to be clarified. The aim of this systematic review is to give an overview ofin vivostudies dealing with ADSCs, by summarizing the main evidence for the treatment of cartilage disease of the knee.


2019 ◽  
Vol 20 (12) ◽  
pp. 3105 ◽  
Author(s):  
Marta Torres-Torrillas ◽  
Monica Rubio ◽  
Elena Damia ◽  
Belen Cuervo ◽  
Ayla del Romero ◽  
...  

Chronic musculoskeletal (MSK) pain is one of the most common medical complaints worldwide and musculoskeletal injuries have an enormous social and economical impact. Current pharmacological and surgical treatments aim to relief pain and restore function; however, unsatiscactory outcomes are commonly reported. In order to find an accurate treatment to such pathologies, over the last years, there has been a significantly increasing interest in cellular therapies, such as adipose-derived mesenchymal stem cells (AMSCs). These cells represent a relatively new strategy in regenerative medicine, with many potential applications, especially regarding MSK disorders, and preclinical and clinical studies have demonstrated their efficacy in muscle, tendon, bone and cartilage regeneration. Nevertheless, several worries about their safety and side effects at long-term remain unsolved. This article aims to review the current state of AMSCs therapy in the treatment of several MSK diseases and their clinical applications in veterinary and human medicine.


2020 ◽  
Vol 8 (8) ◽  
pp. 232596712094531 ◽  
Author(s):  
Matthew J. Kraeutler ◽  
Gianna M. Aliberti ◽  
Anthony J. Scillia ◽  
Eric C. McCarty ◽  
Mary K. Mulcahey

Background: Microfracture (MFx) is one of the most common techniques used for the treatment of articular cartilage defects, although recently there has been a trend toward the use of drilling rather than MFx for the treatment of these defects. Purpose: To perform a systematic review of basic science studies to determine the effect of microfracture versus drilling for articular cartilage repair. Study Design: Systematic review. Methods: A systematic review was performed by searching PubMed, the Cochrane Library, and EMBASE to identify basic science studies comparing outcomes of MFx versus drilling. The search phrase used was microfracture AND (drilling OR microdrilling). Inclusion criteria were basic science studies that directly compared the effect of MFx versus drilling on subchondral bone, bone marrow stimulation, and cartilage regeneration. Results: A total of 7 studies met the inclusion criteria and were included in this systematic review. Of these, 4 studies were performed in rabbits, 1 study in sheep, and 2 studies in humans. All of the included studies investigated cartilage repair in the knee. In the animal studies, microfracture produced fractured and compacted bone and led to increased osteocyte necrosis compared with drilling. Deep drilling (6 mm) was superior to both shallow drilling (2 mm) and MFx in terms of increased subchondral hematoma with greater access to marrow stroma, improved cartilage repair, and increased mineralized bone. However, the overall quality of cartilage repair tissue was poor regardless of marrow stimulation technique. In 2 studies that investigated repair tissue after MFx and/or drilling in human patients with osteoarthritis and cartilage defects, the investigators found that cartilage repair tissue did not achieve the quality of normal hyaline articular cartilage. Conclusion: In the limited basic science studies that are available, deep drilling of cartilage defects in the knee resulted in improved biological features compared with MFx, including less damage to the subchondral bone and greater access to marrow stroma. Regardless of marrow stimulation technique, the overall quality of cartilage regeneration was poor and did not achieve the characteristics of native hyaline cartilage. Overall, there is a general lack of basic science literature comparing microfracture versus drilling for focal chondral defects.


2009 ◽  
Vol 18 (9) ◽  
pp. 1013-1028 ◽  
Author(s):  
Tom K. Kuo ◽  
Jennifer H. Ho ◽  
Oscar K. Lee

Mesenchymal stem cells are stem/progenitor cells originated from the mesoderm and can different into multiple cell types of the musculoskeletal system. The vast differentiation potential and the relative ease for culture expansion have established mesenchymal stem cells as the building blocks in cell therapy and tissue engineering applications for a variety of musculoskeletal diseases, including repair of fractures and bone defects, cartilage regeneration, treatment of osteonecrosis of the femoral head, and correction of genetic diseases such as osteogenesis imperfect. However, research in the past decade has revealed differentiation potentials of mesenchymal stem cells beyond lineages of the mesoderm, suggesting broader applications than originally perceived. In this article, we review the recent developments in mesenchymal stem cell research with respect to their emerging properties and applications in nonmusculoskeletal diseases.


Sign in / Sign up

Export Citation Format

Share Document