scholarly journals Estimating CPT Parameters at Unsampled Locations Based on Kriging Interpolation Method

2021 ◽  
Vol 11 (23) ◽  
pp. 11264
Author(s):  
Jinhao Liu ◽  
Jinming Liu ◽  
Zhongwei Li ◽  
Xiaoyu Hou ◽  
Guoliang Dai

The cone penetrometer test (CPT) has been widely used in geotechnical investigations. However, how to use the limited CPT data to reasonably predict the soil parameters of the unsampled regions remains a challenge. In the present study, we adopted the Kriging method to obtain the CPT data of an unsampled location in Adelaide, South Australia, based on the collected CPT data from six soundings around this location. Interpolation results showed that the trend of the estimated parameters is consistent with the trend of parameters of the surrounding points. From the Kriging interpolation result, we further carried out axial bearing capacity calculation of a precast concrete pile using the CPT-based direct method to verify the reliability of the method. The calculated bearing capacity of the pile is 99.6 kN which is very close to the true value of 102.8 kN. Our results demonstrated the effectiveness of the Kriging method in considering the soil spatial variability and predicting soil parameters, which is quite suitable for the application in engineering practice.

2020 ◽  
Vol 10 (21) ◽  
pp. 7625
Author(s):  
Muhammad Usman Arshid ◽  
M. A. Kamal

A regional geotechnical map was developed by employing kriging using spatial and s geostatistical analysis tools. Many studies have been carried out in the field of topography, digital elevation modeling, agriculture, geological, crop, and precipitation mapping. However, no significant contribution to the development of geotechnical mapping has been made. For the appraisal of a geotechnical map, extensive field explorations were carried out throughout the geotechnically diversified plateau spread over an area of approximately 23,000 km2. In total, 450 soil samples were collected from 75 data stations to determine requisite index properties and soil classification for the subsequent allowable bearing capacity evaluation. The formatted test results, along with associated geospatial information, were uploaded to ArcMap, which created an initial input electronic database. The kriging technique of geostatistical analysis was determined to be more feasible for generating a geotechnical map. The developed map represents the distribution of soil in the region as per the engineering classification system, allowable bearing capacity, and American Association of State Highway and Transportation Officials (AASHTO) subgrade rating for 1.5-, 3.0-, and 4.5-m depths. The accuracy of the maps generated using kriging interpolation technique under spatial analyst tools was verified by comparing the values in the generated surface with the actual values measured at randomly selected validation points. The database was primarily created for the appraisal of geotechnical maps and can also be used for preliminary geotechnical investigations, which saves the cost of soil investigations. In addition, this approach allows establishing useful correlations among the geotechnical properties of soil.


2015 ◽  
Vol 4 (1) ◽  
pp. 26
Author(s):  
PUTU MIRAH PURNAMA D. ◽  
KOMANG GDE SUKARSA ◽  
KOMANG DHARMAWAN

Spatial data is data that is presented in the geographic of an object, related to the location, shape and relationship of the earth in space. One of example of spatial data is rainfall. To determine the value of rainfall in an area, built to predict rain post information regarding rainfall. Spatial interpolation is used to estimate rainfall by collecting rainfall values held rain heading around. Assessment methods used in the estimate the rainfall in the Karangasem district is ordinary kriging using isotropic semivariogram that takes into account height on spatial data. Isotropic semivariogram which only takes into account the distance alone. Ordinary kriging method using isotropic semivariogram that takes into account height  value estimated rainfall is much different to the values at the control points Amlapura and Besakih. Interpolation on 3D data are not suitable for use on ordinary kriging method, grouping should be done at the data into a few weeks to application of ordinary kriging interpolation method using anisotropic semivariogram on 3D data.


PROMINE ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 29-36
Author(s):  
Hendro Purnomo

Beside containing nickel (Ni), nickel laterite deposits also contain other elements, including iron (Fe) which have varying levels in each layer. In this study, the distribution of Fe content in the limonite layers was carried out using the indicator kriging method to analyze the probability distribution of iron levels and ordinary kriging to analyze the variability of iron levels spatially. Fitting the variogram was undertaken by using spherical, exponential and gaussian models. The selection of the best variogram model was carried out based on the smallest root mean square error (RMSE) value, while the estimation of resource potential was calculated by the polygon extended area method. The results of the interpolation show that the distribution of iron anomaly occupies ± 83,3% of the research area with a potential resource of ±64.522.110 ton of iron. The evaluation of the interpolation results base on the root mean square standardized prediction error (RMSP) indicates that the estimation results of iron content using the ordinary kriging method are underestimated.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Pengyun Chen ◽  
Ye Li ◽  
Yumin Su ◽  
Xiaolong Chen

The interpolation-reconstruction of local underwater terrain using the underwater digital terrain map (UDTM) is an important step for building an underwater terrain matching unit and directly affects the accuracy of underwater terrain matching navigation. The Kriging method is often used in terrain interpolation, but, with this method, the local terrain features are often lost. Therefore, the accuracy cannot meet the requirements of practical application. Analysis of the geographical features is performed on the basis of the randomness and self-similarity of underwater terrain. We extract the fractal features of local underwater terrain with the fractal Brownian motion model, compensating for the possible errors of the Kriging method with fractal theory. We then put forward an improved Kriging interpolation method based on this fractal compensation. Interpolation-reconstruction tests show that the method can simulate the real underwater terrain features well and that it has good usability.


2018 ◽  
Vol 69 (6) ◽  
pp. 1352-1354
Author(s):  
Anamaria Feier ◽  
Oana Roxana Chivu

The problem of corrosion for old steel bridges in operation is often solved by direct replacement of elements or structure. Only a few studies have been done to determine the efforts influenced by corrosion in those elements. In general, it is considered that a corroded element has exceeded the bearing capacity and should be replaced, but if the corroded element is secondary it could be treated and kept. A factor in the rehabilitation of an old steel bridge in operation is the aspect of structure. If the structure is corroded, rehabilitation decision is taken is easier. Lamellar tearing describes the cracking that occurs beneath the weld and can be characterized as a brittle failure of steel, in the direction perpendicular to the plane of rolling. The paper presents a comprehensive study on lamellar tearing and summarizes some conclusions about the prevention of them. The conclusions will be exemplified in the case of a railway bridge, with a main truss girder. The paper presents also some observations regarding the stress analysis in fillet welds, resulting from the engineering practice.


2011 ◽  
Vol 6 (1) ◽  
pp. 91
Author(s):  
Andi Indrajaya Asaad ◽  
Akhmad Mustafa

Spatial distribution of brackishwater pond soil has a vital role in the system of bioenvironment including brackishwater pond environment. This research was aimed to determine the spatial distribution of brackishwater pond soil characteristics in Pekalongan City, Central Java Province. A total of 59 sampling points each with two different soil depth samplings were determined by simple random method. A total of 21 soil characteristics were measured in the field and analyzed further in the laboratory. Geostatistic with Kriging Interpolation method in the ArcGIS 9.3 software were used to depict the distribution of the data across the landscape. Furthermore, the spatial distribution was presented by using ALOS AVNIR-2 image. Research result indicates that in general, pond soil in Pekalongan City can be classified as soil with high variability or relatively heterogenic with the value of variation coefficient more than 36%. Soil characteristics which have similar pattern of spatial distribution are acid sulfate soil and soil nutrient content. High value of pH, organic matter, and total-N of soil, and on the other hand, low value of PO4 were generally found in the pond area of Krapyak Lor Village, while in Pekalongan City, it was found high clayish soil content but relatively homogenous. It is recommended that pond management must be based on soil characteristics which are different from one area to another. The soil characteristics itself can be drawn and assessed through spatial distribution.


Author(s):  
Oumaima Ezzaamari ◽  
Guénhaël Le Quilliec ◽  
Florian Lacroix ◽  
Stéphane Méo

ABSTRACT Various research is covering instrumented nano-indentation in the literature. However, studies on this characterization test remain limited when it comes to the local mechanical behavior of elastomeric materials. The application of nano-indentation on these materials is a difficult task given their complex mechanical and structural characteristics. We try to overcome these experimental limitations and find an effective numerical approach for local mechanical characterization of hyper-elastic materials. For such needs, we carried out a numerical study based on model reduction and shape manifold approach to investigate the parameters identification of different hyper-elastic constitutive laws by using instrumented indentation. Similarly, we studied the influence of the indenter geometry, the friction coefficient variation, and finally the indented material height effect. To this end, we constructed a reduced order model through a design of experiments by proper orthogonal decomposition combined with the kriging interpolation method.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1944
Author(s):  
Jafari Shalamzari ◽  
Zhang ◽  
Gholami ◽  
Zhang

Site selection for runoff harvesting at large scales is a very complex task. It requires inclusion and spatial analysis of a multitude of accurately measured parameters in a time-efficient manner. Compared with direct measurements of runoff, which is time consuming and costly, a combination of a Geographic Information System (GIS) and multi-criteria techniques have proven feasible to address this challenge. Although the accuracy of this new approach is lower than the direct method, conducting in-situ measurements over large scales is not feasible due to its financial issues, a lack of sufficient human resources, and time limitations. To achieve this purpose, climatic, topographic, and soil parameters were used to estimate a runoff coefficient and volume for a single event with the 33%-exceedance probability of maximum daily rainfall in the Kavir National Park of Iran. The main challenges ahead of this research have been a) the large area of the park and the inability to directly evaluate site suitability for runoff harvesting, b) the need for a quick and reliable site evaluation to implement water harvesting measures to address water scarcity, and c) the lack of discharge volume data from water streams (as there are no permanent water streams in the site) and the necessity of reliably estimating runoff in different parts of the park to design water harvesting structures which have been addressed by using GIS and a rainfall-runoff model (Soil Conservation Service Curve Number (SCS-CN)). Site suitability was evaluated for the natural territory of two important wildlife species of the park, namely Gazella dorcas and Ovis orientalis, as the main important food sources of an endangered species named Acinonyx jubatus, commonly known as Persian Cheetah. Saving Persian Cheetah from extinction is currently the top priority for the park managers, which is the main factor behind the species chosen for this research. The Analytic Hierarchical Process (AHP) and fuzzy membership functions were employed to assign weights and standardized thematic layers, respectively. The layers were then integrated using the weighted linear combination method (WLC) to obtain the final suitability map. Accordingly, 38% of the area (846 km2) is suitable or highly suitable for runoff harvesting, while 62% (2623 km2) has a very low potential for this purpose. Afterward, 11 suitable locations were identified to collect runoff. The results indicated that suitable catchments are mainly located on the southern slopes of the Mount Siahkouh as the only major elevation in the area. The storage capacity of the earth embankment in each catchment was estimated based on the upstream area of the catchment and runoff volume. Based on the population of the intended wildlife species and their average water requirement, there is a need for 6500 m3 of drinking water annually. In the best-case scenario and under the circumstance of receiving five rainstorm events a year, only 257 m3 is collectible from all runoff harvesting structures, which is only 4% of the total water demand.


Sign in / Sign up

Export Citation Format

Share Document