scholarly journals Integrating Image Quality Enhancement Methods and Deep Learning Techniques for Remote Sensing Scene Classification

2021 ◽  
Vol 11 (24) ◽  
pp. 11659
Author(s):  
Sheng-Chieh Hung ◽  
Hui-Ching Wu ◽  
Ming-Hseng Tseng

Through the continued development of technology, applying deep learning to remote sensing scene classification tasks is quite mature. The keys to effective deep learning model training are model architecture, training strategies, and image quality. From previous studies of the author using explainable artificial intelligence (XAI), image cases that have been incorrectly classified can be improved when the model has adequate capacity to correct the classification after manual image quality correction; however, the manual image quality correction process takes a significant amount of time. Therefore, this research integrates technologies such as noise reduction, sharpening, partial color area equalization, and color channel adjustment to evaluate a set of automated strategies for enhancing image quality. These methods can enhance details, light and shadow, color, and other image features, which are beneficial for extracting image features from the deep learning model to further improve the classification efficiency. In this study, we demonstrate that the proposed image quality enhancement strategy and deep learning techniques can effectively improve the scene classification performance of remote sensing images and outperform previous state-of-the-art approaches.

Author(s):  
Di Zhang ◽  
Yichen Zhou ◽  
Jiaqi Zhao ◽  
Yong Zhou

The appropriate setting of hyperparameter is a key factor to determine the performance of the deep learning model. Efficient hyperparametric optimization algorithm can not only improve the efficiency and speed of model hyperparametric optimization, but also reduce the application threshold of deep learning model. Therefore, we propose a parameter learning algorithm-based co-evolutionary for remote sensing scene classification. First, a co-evolution framework is proposed to optimize the optimizer’s hyperparameters and weight parameters of the convolutional neural networks (CNNs) simultaneously. Second, with the strategy of co-evolution with two populations, the hyperparameters can learn within the population and the weights of CNN can be updated by utilizing information between the populations. Finally, the parallel computing mechanism is adapted to speed up the learning process, as the two populations can evolve simultaneously. Extensive experiments on three public datasets demonstrate the effectiveness of the proposed approach.


2019 ◽  
Vol 2019 (1) ◽  
pp. 360-368
Author(s):  
Mekides Assefa Abebe ◽  
Jon Yngve Hardeberg

Different whiteboard image degradations highly reduce the legibility of pen-stroke content as well as the overall quality of the images. Consequently, different researchers addressed the problem through different image enhancement techniques. Most of the state-of-the-art approaches applied common image processing techniques such as background foreground segmentation, text extraction, contrast and color enhancements and white balancing. However, such types of conventional enhancement methods are incapable of recovering severely degraded pen-stroke contents and produce artifacts in the presence of complex pen-stroke illustrations. In order to surmount such problems, the authors have proposed a deep learning based solution. They have contributed a new whiteboard image data set and adopted two deep convolutional neural network architectures for whiteboard image quality enhancement applications. Their different evaluations of the trained models demonstrated their superior performances over the conventional methods.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rajat Garg ◽  
Anil Kumar ◽  
Nikunj Bansal ◽  
Manish Prateek ◽  
Shashi Kumar

AbstractUrban area mapping is an important application of remote sensing which aims at both estimation and change in land cover under the urban area. A major challenge being faced while analyzing Synthetic Aperture Radar (SAR) based remote sensing data is that there is a lot of similarity between highly vegetated urban areas and oriented urban targets with that of actual vegetation. This similarity between some urban areas and vegetation leads to misclassification of the urban area into forest cover. The present work is a precursor study for the dual-frequency L and S-band NASA-ISRO Synthetic Aperture Radar (NISAR) mission and aims at minimizing the misclassification of such highly vegetated and oriented urban targets into vegetation class with the help of deep learning. In this study, three machine learning algorithms Random Forest (RF), K-Nearest Neighbour (KNN), and Support Vector Machine (SVM) have been implemented along with a deep learning model DeepLabv3+ for semantic segmentation of Polarimetric SAR (PolSAR) data. It is a general perception that a large dataset is required for the successful implementation of any deep learning model but in the field of SAR based remote sensing, a major issue is the unavailability of a large benchmark labeled dataset for the implementation of deep learning algorithms from scratch. In current work, it has been shown that a pre-trained deep learning model DeepLabv3+ outperforms the machine learning algorithms for land use and land cover (LULC) classification task even with a small dataset using transfer learning. The highest pixel accuracy of 87.78% and overall pixel accuracy of 85.65% have been achieved with DeepLabv3+ and Random Forest performs best among the machine learning algorithms with overall pixel accuracy of 77.91% while SVM and KNN trail with an overall accuracy of 77.01% and 76.47% respectively. The highest precision of 0.9228 is recorded for the urban class for semantic segmentation task with DeepLabv3+ while machine learning algorithms SVM and RF gave comparable results with a precision of 0.8977 and 0.8958 respectively.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Guangyi Yang ◽  
Xingyu Ding ◽  
Tian Huang ◽  
Kun Cheng ◽  
Weizheng Jin

Abstract Communications industry has remarkably changed with the development of fifth-generation cellular networks. Image, as an indispensable component of communication, has attracted wide attention. Thus, finding a suitable approach to assess image quality is important. Therefore, we propose a deep learning model for image quality assessment (IQA) based on explicit-implicit dual stream network. We use frequency domain features of kurtosis based on wavelet transform to represent explicit features and spatial features extracted by convolutional neural network (CNN) to represent implicit features. Thus, we constructed an explicit-implicit (EI) parallel deep learning model, namely, EI-IQA model. The EI-IQA model is based on the VGGNet that extracts the spatial domain features. On this basis, the number of network layers of VGGNet is reduced by adding the parallel wavelet kurtosis value frequency domain features. Thus, the training parameters and the sample requirements decline. We verified, by cross-validation of different databases, that the wavelet kurtosis feature fusion method based on deep learning has a more complete feature extraction effect and a better generalisation ability. Thus, the method can simulate the human visual perception system better, and subjective feelings become closer to the human eye. The source code about the proposed EI-IQA model is available on github https://github.com/jacob6/EI-IQA.


Author(s):  
Amit Doegar ◽  
◽  
Maitreyee Dutta ◽  
Gaurav Kumar ◽  
◽  
...  

In the present scenario, one of the threats of trust on images for digital and online applications as well as on social media. Individual’s reputation can be turnish using misinformation or manipulation in the digital images. Image forgery detection is an approach for detection and localization of forged components in the image which is manipulated. For effective image forgery detection, an adequate number of features are required which can be accomplished by a deep learning model, which does not require manual feature engineering or handcraft feature approaches. In this paper we have implemented GoogleNet deep learning model to extract the image features and employ Random Forest machine learning algorithm to detect whether the image is forged or not. The proposed approach is implemented on the publicly available benchmark dataset MICC-F220 with k-fold cross validation approach to split the dataset into training and testing dataset and also compared with the state-of-the-art approaches.


Sign in / Sign up

Export Citation Format

Share Document